
Project:

ENORASIS

(Grant Agreement 282949)

ñENVIRONMENTAL OPTIMIZATION OF IRRIGATION MANAGEMENT WITH THE COMBINED USE AND
INTEGRATION OF HIGH PRECISION SATELLITE DATA, ADVANCED MODELING, PROCESS CONTROL AND

BUSINESS INNOVATIONò

Funding Scheme: Collaborative Project
Theme: FP7 -ENV

D5 .3 : ENORASIS Technical Documentation

Issued by: DRAXIS ENVIRONMENTAL TECHNOLOGIES

Issue date: 01 / 05/ 201 3

Due date: 30 / 12 / 201 3

Work Package Leader: DRAXIS ENVIRONMENTAL TECHNOLOGIES

Start date of project: 01 January, 201 2 Duration: 36 months

Document History

(Revisions ï Amendments)

Version and date Changes

01 / 05/201 3 ï v0.1 Initial structure

07 / 08 /201 3 ï v0.2 Testing methodology first draft

12 / 08 /201 3 ï v0.3 Added more guides for partners and performed minor updates (typos)

12/09/2013 ï v0.4 Added ñDSS based on GIS toolò Use Cases testing and installation
methodology

12/09/2013 ï v0.5 Added WSN integration (chapter 2.2)

20/09/2013 ï v0.6 Added Mobile Application Test Cases (chapter 3.4.2)

02/10/2013 ï v0.7 Added Web application Test Cases (chapter 3.4.1)

02/10/2013 ï v0.8 Added REST API testing (chapter 3.2)

07/10/2013 ï v0.9 Added interfaces with charging billing systems , several modules installation
procedure, database installation procedure

08/10/2013 ï v0.10 Added revised web application testing cases

09/10/2013 ï v0.11 Added DSS execution methodology (installation, parameterization)

10/10/2013 ï v0.12 Added WRF installation, parameterization procedure

14/10/2013 ï v0.13 Added ENORASIS Core installation, Prediction importer installation

21/10/2013 ï v0.20 Added Performance testing results

28/10/2013 ï v0.30 Revised performance testing results

11 /1 1/2013 ï v0. 50 Added new use case testing results

02/12/2013 ï v1.0 Finalized contributions

Dissemination Level

PU Public

PP Restricted to other programme participants (including the EC Services)

RE Restricted to a group specified by the consortium (including the EC Services)

CO Confidential, only for members of the consortium (including the EC) X

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for
the use, which might be made, of the following information.

The views expressed in this report are those of the authors and do not necessarily reflect tho se of the
European Commission

© ENORASIS Consortium, 201 3

Reproduction is authorised provided the source is acknowledged

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12 /201 3 Page i

Table of Contents

1 EXECUTIVE SUMMARY ___ 1

2 INTEGRATION METHODOLOGY and RESULTS ______________________________________ 2

2.1 Meteorological analysis tool ___ 2

2.2 WSN ___ 3
2.2.1 Sensor measures integration ___ 3
2.2.2 Valves operation integration__ 6

2.3 Interfaces with charging / billing systems ___ 6
2.3.1 Connector description ___ 6
2.3.2 Atlantis ERP test case ___ 7

3 TESTING METHODOLOGY and RESULTS ___ 8

3.1 Testing methodology and issue reporting ___ 8
3.1.1 Unit testing ___ 8
3.1.2 Performance testing __ 9
3.1.3 Testing scenarios or Use cases testing ___ 10
3.1.4 User acceptance testing __ 13
3.1.5 Reporting and following issues ___ 13

3.2 Unit testing the REST API ___ 16

3.3 Performance testing ___ 21

3.4 Testing scenarios or Use cases testing ___ 23
3.4.1 Web application___ 23
3.4.2 Mobile application ___ 76
3.4.3 DSS based on GIS tool ___ 107
3.4.4 Irrigation management subsystem ___ 132

3.5 User acceptance testing ___ 137

4 INSTALLATION METHODOLOGY ___ 140

4.1 Technical specifications and installation procedure ___________________________________ 140
4.1.1 Database ___ 140
4.1.2 ENORASIS core ___ 143
4.1.3 Forecast tool installation, configuration ___ 170

5 REFERENCES ___ 174

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12 /201 3 Page ii

List of figures
Figure 1: Tree topology 3
Figure 2: Creation of a procedure 4
Figure 3: Detail of an observed property added 5
Figure 4: Naming convention for the observed properties 5
Figure 5: Example of SensorName.dat formatted file 6
Figure 6: Redmine form for submitting a new issue. 14
Figure 7: Flowchart explaining the various i ssue statuses 16
Figure 8: Command Prompt window during testing 18
Figure 9: Test results 18
Figure 10: Code example 20
Figure 11 : Loading time for the Cyprus field page 22
Figure 12 : Loading time for a userôs "Home Page" 23
Figure 13 : Loading time for a sensors page 23
Figure 14: Project test classesô structure 79
Figure 15: Successful test result 80
Figure 16: Unsuccessful test result 80
Figure 17 : Distribution of soil moisture modelled with different system setups 133
Figure 18 : The old ñplot viewò as it was in the requirements 138
Figure 19 : The revised ñplot viewò 139
Figure 20 : Restoring Database 140
Figure 21 : Specify Backup file 141
Figure 22 : Select the backup set to restore 141
Figure 23 : Restore Database Options 142
Figure 24 : Restore Database progress 143
Figure 25 : Restore completed message 143
Figure 26 : Main circuit board 145
Figure 27 : Battery pack and the GPRS modem 145
Figure 28 : Connect to the PWR input of the modem 14 6
Figure 29 : Battery connection 146
Figure 30 : Solar Panel connector 147
Figure 31 : Final connection 147
Figure 32 : RS232 cable to modem 148
Figure 33 : White connector of the RS232 modem 148
Figure 34 : Eject SIM card slot 149
Figure 35 : Inserting the SIM card 149
Figure 36 : Middleware main screen 150
Figure 37 : Coordinator info screen 150
Figure 38 : Coordinator tab 151
Figure 39 : WSN whitel ist for the coordinator 151
Figure 40 : Scan network screen 152
Figure 41 : Change mode 152
Figure 42 : Name and description of the task 153
Figure 43 : Schedule for task execution 154
Figure 44 : Path for ENORASIS Connector 155
Figure 45 : Settings for the Universal Connector 155
Figure 46 : Microsoft SQL Server Agent Jobs 161
Figure 47 : Definition of the execution of DSS calculation 161
Figure 48 : Steps tab 162
Figure 49 : Set up of the start hour 162
Figure 50 : Frequency of the execution 163
Figure 51 : General data for Mail Alerts 163
Figure 52 : Parameters for running the task 164
Figure 53 : Specify the path for the .exe file 164

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12 /201 3 Page iii

Figure 54 : Parameters on how the task should run 165
Figure 55 : Additional settings affecting the behavior of the task 165
Figure 56 : Name of the task and parameters according to user's needs 166
Figure 57 : Settings according to preferences 167
Figure 58 : Path for the .exe file 168
Figure 59 : Conditions for the task to run 168
Figure 60 : Settings for the Read Sensors 169
Figure 61 : Task history and level of completion 170

List of tables
Table 1: Low and High level tests for different parts of the ENORASIS platform 8
Table 2: Methods available for FIELDS item with corresponding return values or actions performed 9
Table 3: Test scenario written in text 11
Table 4: Testing cases for systems setups 132
Table 5: Testing cases addressing systems failures 134
Table 6: Testing results for systems failure cases 137

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 1

1 EXECUTIVE SUMMARY

This deliverable conaints the ENORASIS documentation of the various methodologies used in the project,
along with their respective results (where applicable). Briefly, the following methodologies are covered in
the next chapters:

1. Integration methodology (and results). Explains how the various components from WP4 were

integrated in the final platform .

2. Testing methodology (and results). Explains the various types of testing chosen for the different

parts of ENORASIS . Specific results are given to indicate the amount of issue s th at were

recovere d and resolved. Also the issue reporting and resolving methodology was covered in a

chapter in the deliverable.

3. Installation methodology which serves as an installation manual for the various software

ENORASIS parts

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 2

2 INTEGRATION METHODOLOGY and RESULTS
The four phases of the integration life cycle were :

¶ Planning the integration: The process of connecting the autonomous components with the

ENORASIS platform bega n with a planning phase, in which for all the participating modules

preliminary activities and examinations of all relevant technical, security, and administrative

issues were performed. The purpose of the planning phase wa s to ensure that the integration will

operate as efficiently and securely as possible.

¶ Establishing the integration: development and execution of a plan for establishing the integration,

including implementing or configuring appropriate security controls.

¶ Maintaining the integration: the ENORASIS framework actively maintain s the integration after it is

established to ensure that it operates properly and securely.

¶ Disconnecting the integration: Any termination is conducted in a planned manner to avoid

disrupting the frameworks functionality as a total. In response to an emergency, however, one or

both components may need to terminate the integration immediately.

All components are able to work independently of the main framework and report all information back to
it synchronously or asynchro nously depending on the available network means. As a ll components

provide data to the ENORASIS system using the REST API , they are able to work independently from
each other and keep providing data and measurements even when other components are offline o r fail.

The componentsô communication with the REST API uses HTTP over SSL/TLS (HTTPS). HTTPS ensures
that that no one can intercept the data midway of their transfer and help verify the serverôs identity.

With the use of a central API, adding or removing components is very straight forward and can happen

at any time during the lifecycle of ENORASIS without ever interrupting the state of the application. If

meteorological partners are found they can start sending data right away and the system will be abl e to
handle the new sources and provide the new data to the Decision Support System. If for some reason an
existing partner has a technical issue and stops sending data the system will continue working as
expected without these data.

2.1 Meteorological analys is tool

The Meteorological predictions created by the partners are exported in a commonly formatted text file
with the following format.

Lat=51.352, Lon=21.667, RR1d (mm), POP (%), SRavg (MJ/m2/day), WSavg (m/s), Tmn (C), Tmx (C), RHavg (%)

2013 -03 -07 11. 49 100 33.40 3.04 0.54 9.85 95.33

2013 -03 -08 12.11 100 30.93 6.68 -2.59 0.42 91.50

2013 -03 -09 9.98 100 34.24 5.46 -5.06 -1.04 91.70

The first line holds the location for the measurement and describes the types and units for the data to
follow. Each one of the next three lines consist of a prediction for a single day.

Each provider is required to request a unique source identifier from the ENORASIS administrator to make

sure there is no conflicts with others . This will be used to identify who is the creato r of these data in the
system.

The ENORASIS core has integrated a Meteorological importer that accepts files of this format, checks
them and saves them in the database for use. It is responsible for making sure that the data are valid
and only keep the la test prediction for each day and provider.

Having this identifier the provider is able to start sending data using the wget tool to the URL provided on

the Meteorological importer installation guide. (Wget is usually included in linux installations and ca n be
easily obtained for windows and other operating systems.)

This can be automated via cron scripts on linux or scheduled tasks on windows for all files that the
provide produces.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 3

wget -- post - file=d08.txt http://weatherforecasts.dev. ENORASIS .eu/api/weat herforecasts/[source_identifier]

2.2 WSN

Field measurements represent one of the most important entries to the ENORASIS system, which will be
taken into account when making decisions. Managing these measurements and correctly integrating them
in the Decision Support System is, therefore, a critical aspect. Data is measured by a network of sensors

deployed wirelessly into the field subject of study. This Wireless Sensor Network (WSN) is basica lly
composed by end devices (sensors or valves) , and a central coordi nator. There may be also intermediate
nodes or routers, used to extend the network to cover wider areas.

They form a tree topology [Figure 1] following the next rul es: co ordinator and routers can have children,

and can therefore be parents. End devices cannot have children, and therefore cannot be parents. A child

can only directly communicate with its parent (and with no other node). A parent can only directly
commu nicate with its children and with its own parent. In sending a message from one node to another,
the message must travel from the source node up the tree to the nearest common ancestor and then
down the tree to the destination node.

Network end devices , in order to save the small batteries they are equipped with, are ñsleepingò during
most of the operation time (7 seconds in ENORASIS WSN) . This means they are on a low consume mode
and only once each predefined period of time they wake up to carry out sever al activities. When a sensor
wakes up, it sends the corresponding data to the coordinator, polls its parent to check whether there is
data waiting to be delivered, and go back to sleep. This polling proc ess is necessary in case it is not

possible to delive r the data immediately because the target node may be in sleep mode. It is the
responsibility of the end device to do so.

Figure 1 : Tree topology

Once the coordinator gathers the measures coming from the nodes in the network, it pushes this
information to the network middleware, formed by a number of processes, services and infrastructure
that manages the field data in order to process and send it to the ENORASIS syste m.

The middleware interface with the network itself is a Listener process, which listens for data sent by the
coordinator. The listener processes the data, parsing it and storing it in the WSN database. The WSN
database stores information about the network devices, its identifiers and addresses, and also the
measures obtained by the network.

2.2.1 Sensor measures integration

To integrate field sensor measures in the ENORASIS platform a Sensor Observation Services (SOS) is
used. SOS is a standard defined b y the Open Geospatial Consortium which is applicable to use cases in
which sensor data needs to be managed in an interoperable way. This standard defines a Web service

interface which allows querying observations, sensor metadata, as well as representation s of observed

features. Further, this standard defines m eans to register new sensors and to remove existing ones as
well as operations to insert new sensor observations.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 4

The first step is registering the sensor s in the SOS service interface:

https://istgeo.ist.supsi.ch/istsos/admin/

SOS server can hold different services (in the ENORASIS project th is service is called ñENORASISò).
Those services work with procedures, which will correspond generally to a sensor, so we will create a
procedure (see Figure 2) for each of the sensors we have deployed in the field. We must fill the name of
th e sensor or station, the type of system the sensor is (fixed o r mobile, ENORASIS only uses fixed
systems), and a textual description of the sensor. To describe the location we must add a name for it and

the sensor coordinates as well as the EPSG code. Coor dinate ñXò is the longitude, ñYò the latitude and ñZò
the altitude. The EPSG code identifies the coordinates system used to describe the position. The most
commonly used are:

¶ 4326 : references the coordinates system employed by GPS (Global Positioning Syst em) devices

¶ 3857 : references the coordinates system used by the main internet cartography applications

(Google Maps, OpenStreetMapsé)

Finally we need to add the observed properties of the sensor, in case of a sensor that can measure/obtain

different prop erties, we can add them together to the same procedure as long as these measures are
synchronized. If different properties are obtained by the sensor at different times, each property should

be added to a different procedure. Once an observed property is f illed in the interface we must press the
Add button to have it included (see Figure 3). When the registry of the sensor is finished we should use
the submit button in order to have it correctly registered in the system. The observed property type and
the units of measure must be selected from a drop down list, the former follows a special naming
convention shown in Figure 4.

Figure 2 : Creation of a procedure

https://istgeo.ist.supsi.ch/istsos/admin/

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 5

Figure 3 : Detail of an observed property added

urn:ogc:def:parameter:x-istsos:1.0:

meteo

air

humidity

absolute

relative

wind

speed

direction

precipitation

insolation

agro

soil

temperature

moisture

irrigation

water

Figure 4 : Naming convention for the observed properties

The next step is sending the obtained measures to the SOS service for being storage and subsequently
used by the ENORASIS Decision Support System (DSS). This process uses several scripts or programs,

described in the following paragraphs. Our measures were left inside the WSN database , now we need to
extract that data from the database, format it accordingly to the SOS speci fications and finally pushed to
the SOS server.

The scripts employed to carry out that processes are:

1. SensorName.sql.bat : it takes the sensor name and its device ID, and creates and runs a sql script

(SensorName.sql) that pulls the data from the WSN Data base and puts it into a data folder where

it waits to be further processed.

2. SensorName.ld.bat file: takes the result of the sql script and clears it of any unwanted

characters, formatting it for the SOS requirements. These requirements will be explained la ter.

3. cmdimportcsv.py file: Pushes the data to the SOS server.

The result of scripts 1 and 2 is a folder with files named SensorName.dat that contains the observed data
in the format presented in the example of Figure 5. It is a Comma Separated Values (CSV) file with a
header containing the properties included in the procedure, in this case: time, temperature and
precipitation; and a body containing the observations accor ding to the header order. The header
properties will be represented in the aforementioned naming convention (Figure 4).

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 6

urn:ogc:def:parameter:x-istsos:1.0:time:iso8601,urn:ogc:def:parameter:x-istsos:1.0:meteo:air:temperature,

urn:ogc:def:parameter:x-istsos:1.0:meteo:air:precipitation

2013-01-01T00:10:00.000000+0100,0.446000,0.4,273.2

2013-01-01T00:20:00.000000+0100,0.862000,0.2,271.4

2013-01-01T00:30:00.000000+0100,0.932000,0.2,270.7

2013-01-01T00:40:00.000000+0100,0.384000,0.0,271.3

Figure 5 : Example of SensorName.dat formatted file

The script number 3 will push the files in the resulting folder to the SOS server. This folder is included as

a parameter when calling the script, as well as, the service name, the procedure or procedures (comma
separated list) corresponding to the measures, and the user and password required by the service.

python cmdimportcsv.py -s serviceName -u SOSurl -p procedureList -w /filesFolder -usr user -pwd passwd

2.2.2 Valves operation integration

Valve s data exchange is carried out differently than sensors measures, in this case, unlike the sensor
measures management, several commands have to be sent from the ENORASIS platform to the WSN
network in order to activate or deactivate valves. Therefore, it is the WSN middleware who provides a
service to carry out that commands.

A RESTful Web Service is deployed in the WSN middleware providing the following commands:

¶ Get Valve Status :

o It is a GET command to the URLhttp://SERVER/api/Valve/{IeeeAddr} receiving which is

the current status of the Valve identified with the corresponding address (IeeeAddr). The

status could be 0 (closed) or 1 (open).

¶ Change Valve Sta tus :

o It is a POST command to the URL http://SERVER/api/Valve/ and a body like this

{"NewStatus":"1", "IeeeAddr":"114C1C00008D1511"} to activate valve identified by that IEEE

address. It responses with a {NewRequestId} in order to identify this request for futu re

enquiries.

¶ Get Request Status :

o It is a GET command to the URLhttp://SERVER/api/request/{NewRequestId} receiving

the status of a previous Change Valve Status request identified by its Id. It is useful when

sending a Change Valve Status command during the sleepin g time of a Valve: t he valve

will receive the command as soon as it wakes up (every 7 seconds) a nd the Get Request

Status will inform that th e given request was successful.

2.3 Interfaces with c harging / b illing system s

In order for ENORASIS to be able to integrate with many ERP solutions, the consortium bui lt the
ENORASIS Universal Connector. It is a n application platform that does not depend on specific ERP
vendor/platform and can help in easily exchanging the various data between systems through web
services .

The system can be used on - line, accessing data in real time, or off - line, using data transfer through files
on ftp servers, depending on the abilities of the ERP system provider. In the on - line version, the
ENORASIS Universal Connector is able to communicate with the ERP system by getting data from Web
Services belonging to the ERP or directly fro m the ERP database if the ERP Web Service is not available.

2.3.1 Connector description

The ENORASIS Universal Connector implements a list of actions that execute periodically and synchronize
ENORASIS with an ERP. As actions the connector recognizes:

¶ actions that read data from the ERP side and store s to the ENORASIS database, and

¶ actions that read data from ENORASIS database and saves it to the ERP

http://server/api/Valve/%7bIeeeAddr%7d
http://server/api/Valve/
http://server/api/request/%7bNewRequestId%7d

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 7

The output of a reading action is the input of a writing action, so the link procedures were designed
according on the implementation and follow a set of conversion rules (specific XML structures, CSV or
ASCII files).

The connector comprises of an executable (EnorasisUniversalConnector.exe) which needs to be added on

a scheduled execution ton run once (or more) pe r day. The executable looks for its configuration file
(EnorasisUniversalConnector.ini) which defines the way to connect to the ENORASIS database. The
execution of the executable will look for a specific ERP connection (also defined in the configuration) a nd
will sync with ENORASIS.

2.3.2 Atlantis ERP test case

As a test case of the above implementation the consortium create a live bridge with the ATLANTIS ERP
system using its own Roads Web Service .

The Roads Web Service (RWS.exe) is a service that allows to query and update data in an Atlantis ERP

installation . The updating process is performed by taking into account all the peculiarities of the
configuration and the specific needs of each installation.

The Atlantis web service mission is to stay in standby, being ready to receive requests . The
communication with a third party (like the ENORASIS API) application must be performed using a
particular grammar (API) .

2.3.2.1 Sending data to Atlantis ERP

When sending data to the ERP, we mainly need to link the two major e ntities:

¶ the farmer with its field (as a Customer in the ERP) and

¶ the location.

The reason the location was included in the data exchange is because the price of the water may be
different by location. Since the quantity of the water consumption was nee ded, the location was linked

with an ERP stock Item. This was specific to the test case that was built , as in other cases the location
can be a separate dimension that together with the water type (household, industrial, irrigation etc)
provides a final pr ice of the water consumption.

Also, various pricing polic ies can be defined and applied within the ERP by considering daily consumption,
monthly consumption, average consumption etc. These policies will not affect the interface between the
two systems as they all run in the ERP environment.

Besides the effective water consumption, the ENORAIS could also forward to the ERP the water
consumption forecast for each farmer. Using this number, the ERP can provide also a water availability
scenario.

2.3.2.2 Getting da ta from Atlantis ERP

When getting data from Atlantis ERP, we need to get updated about :

¶ total balance of the customer (farmer)

¶ unbilled Consumption (quantity and value)

¶ water availability (if available in the specific ERP implementation)

The water availability scenario can use the following sources of information:

¶ farmer consumption forecast

¶ availability of water resources

¶ scheduled maintenance at irrigation points

If the total request from farmers is over the irrigation capacity, the ERP may sugg est a percentage of
availability to each farmer. In this way, the water availability can be a fraction (between 0 and 100%) of
the farmerôs estimated consumption value.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 8

3 TESTING METHODOLOGY and RESULTS

3.1 Testing methodology and issue reporting

This chapte r provides the methodology on which the testing plan and the various tests w as based upon,
for the different types of testing performed on the ENORASIS platforms. The planning is based on use
case scenarios that need to match functional and non - functional system requirements as defined in
deliverable 2.3. The aim wa s to test both small functional parts of code (low - level tests) which w as

mainly be held by developers and integrators, and the platforms as a whole (high - level tests) held by
users running pilot s and/or other potential end users of the application.

Low - level tests High - level tests

Unit testing (REST API) Use cases (Web & Mobile & GIS applications)

Performance (REST API , ENORASIS server) User acceptance (Web & Mobile & GIS
applications)

Algorithm tests (Irrigation management
system)

Table 1 : Low and High level tests for different parts of the ENORASIS platform

The methodology for each type of testing is provided below (chapters 3.1.1 , 3.1.2 , 3.1.3 , 3.1.4), along
with a workflow (chapter 3.1.5) for reporting issues back to the consortium. The results a nd the actual
plan for each type of testing, are analyzed in chapters 3.2 , 3.3 , 3.4 , 3.5 below.

3.1.1 Unit testing

Unit testing refers to the testing methodology where individual units of code , or one or more computer

program modules , are tested to determine whether they function properly and according to user

requirements. The goal of unit testing is to isolate each part of a program / service and show that the
individual parts are correct. A unit test provides a strict, written contract that the piece of code must satisfy.
[1]

In ENORASIS, unit testing was used to verify the validity of the ENORASIS core which is the REST API
upon on which the Web, Mobile and GIS applications have been developed. It assisted the consortium in
tracking inconsistencies according to the REST documentation, and uncaught exceptions that occurred in
cases when bad or missing inputs were supplied. It also assisted in testing the ENORASIS core, throughout
the integration process or even at later stages where slight changes to the application were required. By
using unit testing the consortium managed to make sure all modules worked correctly even after many
updates in the code.

There exists a wide variety of available tools (e.g. Jasmine, RESTUnit, PHPUnit ,JUnit) , both commercial
and free, which can be utilized to perform unit testing [2] . An indicative tool (which was also our choice)
is JASMINE [3] , which is a development framework for testing JavaScript code. An example of code
written in JASMINE is the following:

describe ('API CALL UN IT TESTING' ,function () {
// GET /properties
describe ('GET /api' , function () {
it ("should respond with status 200" , function (done) {
request ('http://localhost/api' ,function (err ,resp) {

assert.equal (resp.statusCode ,200);
done ();
 });
 });
 });

});

Such tests were written in order to test the REST API that was built for the ENORASIS project. Suppose
that we wanted to test our REST API, specifically the FIELDS items. We would then have to write code

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 9

snippets testing each method that is available for this item (the manual for the REST API shall provide a
good guide for the tests that need to be written) . The methods that are currently available for the FIELDS

item and their return values or actions performed are shown in Table 2. For each of those cases discrete
unit testing code snippets need to be written, using parameters (e.g. :ID) with realistic values that exist
or do not exist in the database, and with unreali stic values that are out of bounds or are of the wrong
data type (e.g. alphanumerical instead of numerical) .

FIELDS Methods Values Returned / Actions Performed

GET /api/apiField
The method will return an array of all stored fields in JSON

format

GET /api/apiField/:ID
The method will return the FIELD having an ID equal to :ID

If the :ID was no found it needs to return 404

GET /api/api Plot?FieldID= :ID
The method will return an array of plots that belong to the

field with an ID equal to :ID

DELETE /api/apiField/:ID

The method will delete the FIELD with an ID equal to :ID and

return status 200

If the user was unauthorized to delete the FIELD with :ID it

returns status 401

If the ID is not found it returns status 404

POST /api/apiField

with request

body{"NAME":"TEST_FIELD"}

The method will create a new FIELD using the da ta provided in

the request body and return status 201 and the new field

created in JSON format

PUT /api/apiField/:ID

with request

body{"ID":1,NAME":"TEST_FIELD"}

The method will edit the FIELD having an ID equal to :ID

using the data provided in the request body and return status

200 and the modified field created in JSON format

In any of the above cases that use

:ID if a non -numerical value is used

It returns status 500

Table 2 : Methods available for FIELDS item with corresponding return values or actions
performed

The JASMINE code may test the previously mentioned methods by the following two ways:

¶ The right method parameters will be provided to test that the returned result is actually the one

expected. An example would be to call the method ñDELETE /api/apiField/1ò and check that the

FIELD with ID equal to 1 was act ually deleted from the database and got a return status 200 .

¶ The wrong method paramete rs will be provided to test that the system handles them according to

the error handling code that is implemented in that specific case. Such parameters may have a

different variable type , may be out of bounds in case the parameter has a numeric value or m ay

represent values that are not currently available within the system. For example, code may be

written in JASMINE, which will test the result of calling the method ñGET /api/apiField/100ò when

providing a FIELD ID that does not exist in the database.

It is obvious by the examples above that several unit tests need ed to be written in order to check every
possible case covered by the REST API.

3.1.2 Performance testing

Performance testing is performed when a systemôs responsiveness and stability need s to be tested under

a particular workload. Various tools /services exist to test performance e.g. Wcat, Blitz.io, Spray, Jetty
and all involve the testing against specific load which is predefined or customized via a code snippet.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 10

The ENORASIS REST API a nd ENORASIS Server need ed to be tested on performance when operating by
increasing load conditions. In order to have reliable test results, the test conditions need ed to be

documented and the scripts that were created to simulate the workload and the reque sts, were also kept
so they can be reused at any time . Such tests need to be performed under the same circumstances, as
any changes in the system ð whether itôs an OS upgrade or another app running and stealing bandwidth
or CPU ð can affect the results . Fu rthermore those tests need to be executed by a machine other than
the ENORASIS server.

For the ENORASIS REST, a custom tool w as developed that perform ed the various performance
scenarios .

3.1.3 Testing scenarios or Use cases testing

Another way to test the sys tem is the technique of testing scenarios . A test scenario is a step by step
interaction between the user and the system trying to achieve a certain goal. They are usually depicted

by a UML diagram or a workflow. As will be explained below, the user may be a human or may be
simulated by another external system/tool. Therefore, testing scenarios can be performed in the following
two ways:

¶ Manual

Test scenarios are created and described and then a user takes up the task to perform each one

and note back comments and if the scenario was accomplished successfully.

¶ Automatic

Test scenarios can be created using a tool in a scripting programming language and then be run

automatically. This eliminates the need of a user t o run them manually one by one and repor t the

results.

Both approaches need the users to first come up with the plan of the scenarios that need to be tested
and note them either in paper or in a scripting language. The only difference is that in the end the
automatic approach can be run on deman d without consuming more effort by users.

Tests for both cases need to cover more than one user roles, users that are assigned to specific plots and
not, users that do not exist in the system, unrealistic parameter values (out of bounds and wrong data
ty pes), missing required parameter values and in general situations that the system might reach due to
unforeseen user behavior.

Finally another approach for testing smaller parts of the system (e.g. algorithms) require to identify
different testing scenarios given their inputs and outputs and then execute them using custom code
thatôs created for this purpose.

The two testing appr oaches are analyzed further below.

3.1.3.1 Manual testing scenarios

As mentioned above, manual test scenarios need to be described by users and then executed by

users . An exhaustive list of scenarios was created to include all possible interactions between the

user and the system , documenting the desired outcome that leads to a successful completion of

the scenario .

The test scenarios derive d from the user requirement s that were set in previous deliverables. An

indicative example of a test scenario for the web application is the one presented in the table

below:

TEST CASE # and Name 1 View the list of plots for a
field

Purpose User logs in the system and gets a list of the plots available

under a field

System user that needs to
perform the action

info@ ENORASIS .eu

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 11

Preconditions User ñinfo@ ENORASIS .euò exists in the ENORASIS system
and is assigned to the Cyprus field.

User ñinfo@ ENORASIS .euò is a farmer

Users ñinfo@ ENORASIS .euò password is 12345

Post conditions -

MAIN SUCCESSFUL
SCENARIO in numbered
sequence

1. User goes into the login
page app. ENORASIS .eu

2. Users enters

info@ ENORASIS .eu as a
username, and 12345 as
password and clicks on
Login

 3. System checks

credentials and if successful,

redirects user to his home
page where it presents the
list of fields that the user is
assigned to

4. User click on ñCyprusò
field to expand it

 4. System presents all the

information about that field
(plots, sensors, valves)

UNSUCCESSFUL SCENARIOS 2a. Users enters
info@ ENORASIS .eu as a

username, and no password
and clicks on Login

 5ȁ. The system does not

allow the user to log in with
no password .

UNSUCCESSFUL SCENARIOS 2a. Users enters
info@ ENORASIS .eu as a

username, and DDDDD as a
password and clicks on
Login

 5ȁ. The system does not

allow the user to log in since
he didnôt provide the correct
password .

TEST DATE and NUMBER 1

TEST OPERATOR

TEST COMMENTS

TEST MISSION ACCOMPLISHED ERRORS

TEST DATE and NUMBER 2

TEST OPERATOR

TEST COMMENTS

TEST MISSION ACCOMPLISHED ERRORS

TEST DATE and NUMBER 3

TEST OPERATOR

TEST COMMENTS

TEST MISSION ACCOMPLISHED ERRORS

Table 3 : Test scenario written in text

mailto:info@enorasis.eu
mailto:info@enorasis.eu
mailto:info@enorasis.eu
mailto:info@enorasis.eu
mailto:info@enorasis.eu
mailto:info@enorasis.eu

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 12

Manual test case scenarios were used for testing some of the ENORASIS applications (Web, GIS

application).

3.1.3.2 Automatic testing scenarios

As mentioned above, test scenarios can also be executed automatically using a tool , which

eliminates the need for a user to run them manually one by one. Those tools require a user to

first script the different scenarios with their respective inputs/outputs , in a scripting programming

language so it can later be executed automatically and massively. In the end an overall re port is

produced indicating which tests managed to execute successfully and which didnôt. Examples of

such tools are WatiN [4] , Selenium [5] , Sikuli [6] .

Test scenarios for the automatic approach, need to also derive from operational and non -

operational requirement that were set in previous deliverables. One example tool for use case

testing in android (mobile) applications is Robotium [7] which is a test automation framework

which allows for the creation of automatic black -box test cases.

The following code snippet depicts an example of a use case:

publicclass EditorTest extends
 ActivityInstrumentationTestCase2 <EditorActivity >{
 private Solo solo ;

 public EditorTest (){
 super (EditorActivity . class);
 }

 publicvoid setUp () throws Exception {
 solo =newSolo (getInstrumentation (), getActivity ());
 }

 publicvoid testPreferenceIsSaved () throws Exception {

 solo . sendKey (Solo . MENU);
 solo . clickOnText ("More");
 solo . clickOnText ("Preferences");
 solo . clickOnText ("Edit File Extensions");
 Assert . assertTrue (solo . searchText ("rtf"));

 solo . clickOnText ("txt");
 solo . clearEditText (2);
 solo . enterText (2, "robotium");
 solo . clickOnButton ("Save");
 solo . goBack ();
 solo . clickOnText ("Edit File Extensions");
 Assert . assertTrue (solo . searchText ("application/robotium"));

 }

 @Override
 publicvoid tearDown () throws Exception {
 solo . finishOpenedActivities ();
 }
}

Automatic test case scenarios were used to test the ENORASIS mobile application.

3.1.3.3 Custom testing scenarios

Finally another approach for testing smaller parts of the system (e.g. algorithms) require to identify
different testing scenarios given their inputs and outputs and then execute them using custom code
thatôs created for this purpose.

An indicative exampl e in the ENORASIS platform is the irrigation management subsystem which
implemented a decision support system (DSS) by following a complicated algorithm to calculate
current plant water deficit for particular plant phenological stage for each land zone bas ing upon

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 13

measured soil moisture data while expected water deficit for following days is calculated basing upon the
weather forecast .

It was decided that, for this specific algorithm, s cenarios need ed to be written to cover various cases
such as missing W RF data, missing sensor measurements, missing plot data, provide results for a rainy
day, provide results when a plot is beyond field capacity etc. Once all inputs and outputs we re given, a

mechanism to import them in a temporary FIELD w as be created , and the DSS was executed against each
case so we c ould check the validity of the produced results compared to the one that were described in

the scenarios . Inputs were any value required by the DSS (measurements, WRF, plot/field information

etc) and outputs were the DSS result for that given day.

That mechanism force d the DSS algorithm to go through many rare situations in a very short time, and
reveal any mistakes in the implementation of the algorithm or its initial logic.

3.1.4 User acceptance testing

Acceptance testing is defined as the procedure where the end user checks whether the systemôs
requirements of the original specification were met, i.e. if the systemôs specifications coincide with the
requirements that were mutually agreed upon in an earli er phase of the project.

Use case scenarios which were created and used for testing the applications , were be used again in this
phase but this time they were executed also by end users (farmers, pilot runner). Users report ed back
any deviations from what was described in the DoW and what was written in D2.3 deliverable and on the
same time report back on any usability issues they face d during their interactions with the system.

3.1.5 Reporting and following issues

In order to report issues that result from the testing process, the team decided to use the Redmine issue
tracking system which is open source project management and issue tracking tool, released under the

terms of the GNU General Public License v2 (GPL) [8] . Redmine was installed in the ENORASIS server
and is accessible via : http://issues.dotsoft.gr/ Redmine /projects/ ENORASIS .

All partners contribute d issues and follow ed the issue till it ha d been res olved by the assignee.

3.1.5.1 Report an issue

Users can submit issues by visiting the URL
http://issues.dotsoft.gr/ Redmine /projects/ ENORASIS /issues/new (or by clicking on the ñNew issueò
option from the menu placed at the top of the Redmine environment). The user need s to fill in a form
specifying details concerning the issue. The form can be seen in Figure 6.

http://issues.dotsoft.gr/redmine/projects/enorasis
http://issues.dotsoft.gr/redmine/projects/enorasis/issues/new

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 14

Figure 6 : Redmine form for submitting a new issue .

There are several fields that need to be filled in and the important ones are explained bellow:

¶ Tracker

The Tracker refers to the type of issue that is submitted. The available options are:

o Bug: In case the user has discovered a malfunction in the system or an already available

functionality that is not working properly

o New Feature : The user can request a new feature that has not yet been implemented and

is needed according to his opinion

o Support : The user needs some clarification s regarding a specific system functionality or

help with the execution of a certain task

¶ Subject

The Subject of the issue is a one line description of the issue

¶ Description

The Description field contain s an extensive description of the issue, describing in as much detail

the bug, new feature or support submitted issue. Reproduction steps and URLs are included in

this field, in order to allow other users to understand the issu e reported.

¶ Status

The Status of the issue is set to New when an issue is first submitted to the system. The other

available options are explained in the next section s relating to tracking an issueôs progress. In

any case, the Redmine platform sends email s to all individuals involved in an issueôs progress,

informing them of every change in its status.

¶ Priority

The issueôs priority can be selected in this filed depending on its urgency to be resolved.

¶ Assignee

After the user submit s an issue, the project manager assign s it to a developer. The user can

assign it to a person directly , assuming they know who is responsible to resolve it.

¶ Category

Depending on whether the issue concerns the projectôs database, the Android app, the DSS

algorithm, or any other part of the ENORASIS project, the reporter needs to select the

appropriate category. Since each category is monitored by a specific developer then the Assignee

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 15

field will be filled in automatically by the system if the user has not done so already. In case both

Category and Assignee were filled in, the system uses the person indicated in the Assignee field.

3.1.5.2 Issue life cycle

All issues need to go through some stages before they can be closed. The user who reports an issue is
responsible to:

¶ provide all the essential information to the system (e.g. files, URL) in order to make himself

understandable by the others, and also to allow the others to reproduce and realize the issue.

provide additional data if requested, to clear out things (if he believes it is required),

¶ close the issue once he checks it has been fixed/resolved.

An indicative cycle that an issue follows is presented below (the one who reports the issue is referenced
as ñuserò) in text and in a flow chart in Figure 7 :

1. A user first submits an issue, the Status field is always set to the New option . The issue might be

automatically assigned (according to the issue category) to an assignee or the user might have

assigned directly the issue to a developer.

2. The project manager decides if this is a real issue or if it has been reported again. If the issue is

not real then it is rejected (change status to Rejected) with some sort of clarification from the

project manager. If it is accepted, then the project manager makes sure it is assigned properly to

a user (he might leave the original assignee set by the user or the system automatically).

3. As soon as a developer is assigned to this specific issue, the issueôs status is changed to In

progress , stating that the issue is actively being dealt with by the corresponding developer.

4. While working on the issue the developer might feel he needs m ore information or that the issue

was not explained thoroughly by the user. In that case he changes the status to Feedback ,

assign the issue to the original user and write his question on the comment textbox.

a. The user sees the question (every status change , sends an email automatically to the

user, the developer assigned and the project managers assigned to the project) and goes

into the issue tracking system to answer the question. He also needs to assign the issue

back to the developer who posted the ques tion.

5. When t he developer believes that the issue has been resolved , he change s the status to

Resolved and assigns the issue back to the user . Notes might also be provided explaining what

had been done.

6. The user needs to read the available notes (if any) an d check if the issue he tracked was properly

fixed. If it was he needs to set the issue status to Closed . If not, he needs to change the status

to Feedback , supply the reasoning in the comments text box and assign it back to the

developer . The workflow goes back at step 3 and continues from there.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 16

The user submits a new issue and
sets its status to New

Project manager decides
whether to accept or not the

issue .

Accept and assign properly

Developer starts working on the
issue and changes its status to In

Progress

Reject
Project Manager provides

resoning behind the rejection and
sets its status to Rejected .

Developer needs feedback from
the user

Yes

Developer changes status to
Feedback and supplies a question

and assigns issue to the user

User supplies feedback and
assign the issue back to the

developer

No
Developer works on the issue and

changes its status to Resolved
when ready

User confirms that the issue is
resolved

User changes the issue ôs status to
Closed .

Yes

No

User changes status to Feedback ,
provides comments and assigns it

back to the developer

Figure 7 : Flowchart explaining the various issue statuses

3.2 Unit testing the REST API

Testing of the REST API was performed using Node.js and its modules Frisby and Jasmine -Node.

In order to repeat specific/all tests user firstly needs to install Node.js from website http://nodejs.org/ .
Second step is to open Command Prompt and to navigate to ENORASIS folder (SVN ENORASIS \ REST API
TEST\ ENORASIS) and to install Frisby and Jasmine -Node using following commands :

npm install
 npm install -g jasmine -node

npm install will look for json file and install all npm packages listed in it (currently just Frisby).
npm install -g jasmine -node will install Jasmine globally.

If proxy is needed user may specify it with command:

npm config set proxy http://proxy.company.com:PortNumber

To run all test s files in all folders, user can use command:

"jasmine -node ." (with out quotes)
To run all tests files in specific folder, user can use command:

"jasmine -node nameOfTheAPIFolder"
To run just one test file user needs to navigate to desired folder and use command:
 "jasmine -node name -of - the -api_spec.jsò

Testing was done f or 4 cases:

¶ Administrator user ï files ended with goodUserAdmin (username: minic@uns.ac.rs , password:

ENORASIS)

¶ Regular user ï files ended with goodUser (username: notadmin@uns.ac.rs , password:

ENORASIS)

http://nodejs.org/
mailto:minic@uns.ac.rs
mailto:notadmin@uns.ac.rs

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 17

¶ Bad user ï files ended with badUser (wrong username or password)

¶ Not authenticated users ï files ended with noAuthentication (Authorization in header is missing)

REST API testing was done for 22 APIs and all require d files for tests are divided into folders named
according to API name:

¶ apiAppuser

¶ apiChannellength

¶ apiChanneltype

¶ apiCroptype

¶ apiDssResults

¶ apiEvent

¶ apiEventAlert

¶ apiEventSources

¶ apiEventType

¶ apiField

¶ apiIrrigationmethod

¶ apiPlot

¶ apiSensor

¶ apiSensorReading

¶ apiSensortype

¶ apiSoiltype

¶ apiUserAlert

¶ apiUsertype

¶ apiValueReading

¶ apiValve

¶ apiValvetype

¶ apiWeatherForecast

In all performed tests it was looked for:
¶ Bugs

¶ Consistency on the results from the same inputs

¶ Integrity of the parameters passed

¶ Security

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 18

Figure 8 : Command Prompt window during testing

Figure 8 shows running tests, successful tests are marked gree n and with red F . Th e comments are also
shown.

Figure 9 : Test results

Figure 9 shows explanation of the errors, name of the file and name of the function. The most usual

errors are the minor ones e.g. http response with 402 instead of 401. Because of many loops in the test

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 19

files the same error is multiplied with number of passes which means that exact number of errors is
much less than shown.

All errors are su bmitted on the ENORASIS Redmine portal and REST APIs are constantly improved.

Code example for testing REST API is given in Figure 10 .

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 20

Figure 10 : Code example

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 21

3.3 Performance testing

Performance testing is a non - functional testing performed to determine how a system performs in terms
of responsivenes s and stability under a particular workload.

Performance testing is necessary for an application

¶ To identify the maximum operating capacity of a system.

¶ To identify any bottleneck which may occur in system operation and not in development.

¶ To determine the speed or performance of application or system on heavy load.

The performance of our application is tested by increasing the load on this and checking the maximum
limit up to which the application can work in an efficient and effective manner. This is a utomated via the
use of tools such as bench - rest, apachebench, jmeter, funkload, loadfocus etc.

The tool that w as used for testing the performance of the ENORASIS REST API is bench - rest as it i s easy
to create specific REST (HTTP/HTTPS) flows for benchmark ing and its results are considered reliable.

The method that we follow ed wa s to make benchmarks of each web page, for a number of concurrent
GET requests. In order to achieve this, we ha d to group HTTP requests in logical sets for actions that
users usual ly perform together (accessed by GET, POST, PUT and DELETE methods). For example

retrieving a Plot require additional requests like the parent Field, the soil types, crop types, the plotôs
sensors and valves etc. These requests were considered a single flo w and were tested together as to
provide results as close to real life scenarios as possible.

Bench - rest is an API node.js client module for easy load testing / benchmarking REST API's using a
simple structure/DSL . This tool can create REST flows and ret urns (measured) metrics.

Features 1

¶ Easy to create REST (HTTP/HTTPS) flows for benchmarking

¶ Generate good concurrency (at least 8K concurrent connections for single proc on Mac OS X)

¶ Obtain metrics from the runs with average, total, min, max, histogram, r eq/s

¶ Allow iterations to vary easily using token substitution

¶ Run programmatically so can be used with CI server

¶ Flow can have setup and teardown operations for startup and shutdown as well as for each

iteration

¶ Ability to automatically handles cookies sep arately for each iteration

¶ Ability to automatically follows redirects for operations

¶ Errors will automatically stop an iterations flow and be tracked

¶ Easy use and handling of etags

¶ Allows pre/post processing or verification of data

¶ Provide programmatically and via cmd line the dynamic concurrency count

The following is an example of a typical use of Bench - rest API:

Benchmarking 1000 iteration(s) using up to 50 concurrent connections

Simpl y by using the following command : bench - rest - n 1000 -c 50 ./examples/simple.js

Where the simple.js file will have the REST operations.

The output would be like this:

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 22

This way we managed to easily run the automated tests and identify problematic areas of the API that
took longer than expected as well as were able to pinpoint the maximum number of concurrent users that
the current infrastructure could handle in order to upgrade it according to our needs.

Below are three indicative figures that demonstrate the results of measuring the response/loading time,
of t he REST API requests for three cases, the Cyprus field page, a userôs home page, and a sensors page.

Figure 11 : Loading time for the Cyprus field page

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 23

Figure 12 : Loading time for a userôs "Home Page"

Figure 13 : Loading time for a sensors page

3.4 Testing scenarios or Use cases testing

3.4.1 W eb application

Web application testing was preformed manually and results are shown in tables below.

TEST DATE and NUMBER 18. September 2013. UC1.000 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User goes into the login page app. ENORASIS .eu.

2. User enters minic@uns.ac.rs as a username, and ENORASIS as

password and clicks on ñLoginò button.

3. System checks credentials and if successful, redirects user to his

home page where it presents the list of fields that the user is

assigned to.

4. On ñLogoutò button click user logs out from ENORASIS web

applic ation to login page.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.000 #2

mailto:minic@uns.ac.rs

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 24

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User goes into the login page app. ENORASIS .eu

2. User enters notadmin@uns.ac.rs as a username, and ENORASIS as

password and clicks on ñLoginò.

3. System checks credentials and if successful, redirects user to his

home page where it presents the list of fields that the user is

assigned to.

4. On ñLogoutò button click user logs out from ENORASIS web

application to login page.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.000 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User enters minic@ ENORASIS .eu as a username, and 12345 as a

password or no password and clicks on ñLoginò.

2. The system does not allow the user to log in since he didnôt

provide the correct password.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.000 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User enters notadmin@ ENORASIS .eu as a username, and 12345

as a password or no password and clicks on ñLoginò.

2. The system does not allow the user to log in since he didnôt

provide the correct password.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.000 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User enters notadmin@ ENORASIS .eu as a username, and 12345

as a password or no password and clicks on ñLoginò.

2. The system does not allow the user to log in since he didnôt

provide the correct password.

TEST MISSION ACCOMPLISHED

3.4.1.1 [UC1.001] Administering lands

USE CASE # UC1.001

USE CASE Name Administering lands

ACTOR Farmer

Agricultural Organizations

Watering Authorities

System administrator

Purpose (1 phrase) To create, view, update, delete lands

Overview and scope Farmers can administer lands .

Agricultural organizations can administer lands on behalf of their owners
(farmers)

Watering authorities can only view specific characteristics for lands

mailto:notadmin@uns.ac.rs
mailto:minic@enorasis.eu
mailto:notadmin@enorasis.eu
mailto:notadmin@enorasis.eu

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 25

belo nging to their customers

Preconditions Actor has a valid account on the ENORASIS system.

For Agricultural Organizations, when they insert new lands on behalf of
other farmers, the farmerôs data should have already been entered on the

ENORASIS system (so they can be matched with the lands).

For retrieving land data (any actor), the land data should have already
been entered on the ENORASIS system.

Post conditions in words Lands are saved or removed from the database and the performed action
is recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system.

 2. System presents user with the

options ñCreate new landò, ñSearch
landò

3. Actor picks the option
ñCreate new landò, enters the

land details and submits it to
the system.

 4. The action is submitted to the system
and the logs are updated.

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

3a. ñSearch landò The actor instead of picking the ñCreate

new landò option picks ñSearch landò.
Using this option the actor can locate a
land using search filters. When the actor
traces the land of interest, he gets two

new options ñUpdate landò, ñDelete
landò.

3a1. ñUpdate landò The actor picks the option ñUpdate landò
so he can change land characteristics.

3a2. ñDelete landò The actor picks the option ñDelete landò

so he can delete the selected land. The

system informs the actor that deleting
the land will also delete all the records
connected to the land, asks for actor
confirmation and the actor confirms the
deletion of the land.

UNSUCCESSFUL
SCENARIOS

Conditions Actions

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 26

ACTIVITY DIAGRAM

TEST DATE and NUMBER 18. September 2013. UC1.001 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor goes successfully through the ENORASIS login system as

administrator minic@uns.ac.rs.

2. User chose ñMy Fieldsò tab.

3. System redirects user to his ñFieldsò page where it presents the list of

fields that the user is assigned to.

4a1. User picks the option ñCreate new fieldò, enters the field details and

click on ñSave changesò button to submit it to the system.

5a1. The action is submitted to the system and the logs are updated.

New field appe ar in list.

4a2. User chose to click on ñCancelò button on ñCreate field pageò.

5a2. System will bring back to ñMy Fieldsò page without adding any new

data to system.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.001 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User chose to edit existing field by click on ñEditò button for selected

field.

The user instead of picking the ñCreate new fieldò option picks ñEditò field.

Using this option the actor can locate a land on map and edit land

borders. Also can change other attributes assigned to selected field. On

ñSave changesò button click system will update data, and ñCancelò button

will bring back user to fields list page without savings in data. Putting

fonts to Size and Altitude fields does not give permission to complete

task, so numbers are required. Additional error message is printed below.

TEST MISSION ACCOMPLISHED

Create new land
OR

Search

Create new land

Insert land
data and
submit

Update
database
and logs

Search
results

Search

Edit
OR

Delete

Confirmation
on deleting

Edit land
Delete land

NO

YES

Start

Login

End

Update land
data

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 27

TEST DATE and NUMBER 18. September 2013. UC1.001 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñDeleteò field.

After selecting desired field from list, user click on ĂDeleteò button so he

can delete the selected field. The system informs the actor that deleting

the land will also delete all the records connected to the land, asks for

actor confirmation and the actor confirms the deletion of the land.

System present user with options ñDelete recordò and ñCancelò. On click

ñDelete recordò field is successful deleted from system and do not appear

in ñMy fieldsò list. On click ĂCancelò user goes to ĂMy fields pageò and

field is still listed.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.001 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Creating field with letters in the fields that require numbers does not

allow to save changes.

2. Error message is printed.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.001 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ĂDrawò, ĂResetò, òModifyò and òDoneò buttons works correct on Create

field page.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.001 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. After creation field, on ñEdit fieldò page, ñResetò, òDoneò and òModifyò

buttons does not work correctly. Like there is no synchronization between

them. Click on ñResetò brings back shape to previous condition but no

option to modify again, but still can move dots from shape. Only available

option is ñDrawò button but cannot do anything with it or modify and

reset again and again.

2. System now present user only draw option but click on it response

with system error message ñAn object already exist, cannot create

another oneò. There is no option if someone make mistake and reset

draw, to change borders again. And reset, and change, and so on. Only

available option that system provides is to go to previo us page and then

try again.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.001 #7

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Creating field with negative size values ALLOW system to save and

update changes. Also there is mesage that altitude value needs to be in

certan range, but values out from that range can be submited.

2. There is no any error message printed.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.001 #8

TEST OPERATOR Milos Radosavljevic

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 28

TEST COMMENTS 1. Editing field with negative size values ALLOW system to save and

update changes. Also there is mesage that altitude value needs to be in

certan range, but values out from that range can be submited.

2. There is no any error message printed.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.001 #9

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor select field that was created by other user (minic@uns.ac.rs -

administrator) from list as not administrator user notadmin@uns.ac.rs.

and successful redirect to desired field page.

2. System provides options assigned to field that is created before.

3. ñEditò button is active and redirect user to ñEdit fieldò page. User can

change values in fields and click on ñSave changesò.

4. Error message ñcould not save recordò appears. If there is no

permission to save changes then no need permission to edit and access

fields.

5. Same with ñDeleteò button.

6. Strange thing is that although ñcould not save recordò error message

appear after click on ñSave changesò, values like name, size and altitude

are changed and updated to field information beside the fact that

changes are not allowed. After click on ñCancelò it brings back to ñMy

Fieldsò page and selecting field edited before we can notice changed

information which is wrong thing to do.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.001 #10

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Creating field with negative size values allow system to save and

update changes. Also there is mesage that altitude value needs to be in

certan range, but values out from that range can be submited. (Like in

#8 when edit field)

2. There is no any error message printed.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC1.001 #11

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Sometimes when I go to field page map position is in the middle of

ocean. Also when I point to exactly location of field and plots they are not

on the map. After I reload page manually drawings are shown. This only

happens on field page, not on plot page where both field and plots are

drawn fine.

TEST MISSION ERRORS

3.4.1.2 [UC1.002] Administering and watering irrigation plots

USE CASE # UC1.00 2

USE CASE Name Administering and watering irrigation plan

ACTOR Farmer

Agricultural Organizations

Watering Authorities

mailto:notadmin@uns.ac.rs

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 29

System administrator

Purpose (1 phrase) To create, update, delete and water (remotely) irrigation plots

Overview and scope Farmers can administer irrigation plots and their characteristics

Agricultural organizations can administer irrigation plots on behalf of their
owners (farmers)

Watering authorities can only view specific characteristics for irrigation
plots belonging to their customers

Farmer and any user assigned the proper right, can start watering on
irrigation plots remotely

Preconditions Actor has a valid account on the ENORASIS system

For Agricultural Organizations, when they insert new irrigation plots on
behalf of other farmers, the farmerôs data should have already been

entered on the ENORASIS system (so they can be matched with the
irrigation plots)

For retrieving irrigation plot data (any actor), the irrigation plot ôs data
should have already been entered o n the ENORASIS system

For remotely starting/stopping water valves , the water valves must be
able to be remotely handled

Post conditions in words Irrigation plots and their characteristics are saved or removed from the
database and the performed action is recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system.

 2. System presents user with the

options ñCreate new irrigation plot ò,
ñSearch irrigation plot ò

3. Actor picks the option

ñCreate new irrigation plot ò

and defines the new irrigation
plot details. The actor selects
one or more sensors and

water valves that are used by
th at irrigation plot . In case the
user selects more than one
sensor of the same type, then
he can also choose the
aggregation method that will
be used for the measurements

of these sensors (average,
max, min value etc.). Finally
user submits the data to the
system

 4.T he action is submitted to the system
and the logs are updated

Step Branching Action

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 30

3a. ñSearch irrigation plotò The actor instead of picking the ñcreate

new irrigation plotò option picks
ñsearchò. Using this option the actor can

locate a irrigation plot using search
filters. When the actor traces the
irrigation plot of interest, he gets two
new options ñupdateò, ñdeleteò, ñstart
irrigationò, ñstop irrigationò

OTHER SUCCESSFUL
SCENARIOS

3a1. ñUpdate irrigation plotò The actor picks the option ñupdateò so

he can change irrigation plot
characteristics.

3a2. ñDelete irrigation plotò The actor picks the option ñdeleteò so he

can erase the selected irrigation plot.
The system informs the actor that

deleting the land wil l also delete all the
records connected to the irrigation plot,
asks for actor confirmation and the actor

confirms the deletion of the irrigation
plot.

3a4. ñStart irrigationò The actor picks the option ñstart

irrigationò to remotely start the water
valve(s) for the selected irrigation plot
and start the irrigation process.

3a5. ñStop irrigationò The actor picks the option ñstop

irrigationò to remotely stop the water
valve(s) and end the irrigation process.

Conditions Actions

 3a4. 3a5. ñShow error
messageò

In case the water valve cannot be

started or stopped remotely, the system
shows an error message and logs the
action.

UNSUCCESSFUL
SCENARIOS

Create land zone
OR

Search

Create new land zone

Insert land
zone data and

submit

Update
database
and logs

Search
results

Search

Select
action

Confirmation
on deleting

Edit land zone Delete land zone

YES

Start

Login

End

Update land
zone data

Start
irrigation

Stop
irrigation

Start
OR

Stop valve

Start Stop

Water valve
started/
stopped

successfully

YES NO

Show
error

message
and log

NO View water valves
for the landzone

View valves

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 31

ACTIVITY DIAGRAM

TEST DATE and NUMBER 18. September 2013. UC1.002 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor goes successfully through the ENORASIS login system.

2. System presents user with the options ñCreate new related plotò.

3. Actor picks the option ñCreate new related plotò for selected, already

created field and defines the new irrigation plot details. The actor selects

one or more sensors and water valves that are used by that irrigation

plot. In case the user selects more than one sensor of the same type,

then he can also choose the aggregation method that will be used for the

measurements of these sensors (average, max, min value etc.). Finally

user submits the data to the system

4. The action is submitted to the system. New Plot appears in list.

Successful updated to system.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.002 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Creating plot with letters in fields that required numbers does not

allow to save changes.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.002 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñDelete related plotò.

The actor picks the option ñDeleteò so he can erase the selected irrigation

plot. The system asks for actor confirmation and the actor confirms the

deletion of the irrigation plot or cancel it.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.002 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñStart irrigationò.

The actor picks the option start irrigation to remotely start the water

valve(s) for the selected irrigation plot and start the irrigation process by

click on button off to on.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.002 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñStop irrigationò.

The actor picks the option stop irrigation to remotely stop the water

valve(s) and end the irrigation process by click on button on to off.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.002 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñShow error messageò.

In case the water valve cannot be started or stopped remotely, the

system shows an error message and logs the action.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 32

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.002 #7

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñEdit related plotò.

The actor instead of picking the ñCreate new plotò option picks ñEditò plot.

Choosing this option he can change irrigation plot characteristics. Using

this option the actor can locate a plot on map and edit plot borders. Also

can change other attributes assigned to the selected plot. On ñSave

changesò button click system will update data, and ñBackò user goes to

ĂField pageò without change in data. Putting fonts to fields that require

numbers does not give permission to complete task, so numbers must be

filled. Additional error message is printed below.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.002 #8

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. When creating new plot t here is no Field borders on the map. User

need to draw Plot but there is no edges for Field to make it easier.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.002 #9

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Creating plot with values in fields which are in contaburion with logic

ALLOW user to save changes. Eg. negative value for size, slope value

900, water price -19, harvest day 500 or -55, etc. System does not print

any error message and procede futher.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.002 #10

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Editing plot fields like ĂSlope in degreesò, ĂDay of year of sowingò and

harvest day allow to put any number, eather it is defined for some

specific range or not. Click on ĂSave changesò button update these

incorect fields. For eg. user put in field ĂSlope in degreesò 900 and

system save update like it is correct value. Also it is allow to put negative

value in any field, like ñSizeò, ñOther costò, etc.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.002 #11

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. On ñEdit plot pageò ñModifyò, ñResetò, and ñDrawò buttons does not

work correctly like in previous case. After click on ñResetò user can draw

Plot again but canôt reset again if he needs it. This works fine when first

time create plot on ñCreate new related plotò page.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC1.002 #12

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User tries to create plot and forgot to draw borders. System does not

allow to save new plot but also no error message to say what is wrong. It

can b e confusing for the user who does not know what he did wrong .

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 33

TEST MISSION ERRORS

TEST DATE and NUMBER 24. September 2013. UC1.002 #13

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. System can allow creation of plot that has higher size then field related

to plot.

TEST MISSION ERRORS

3.4.1.3 [UC1.003] Duplicating irrigation plots

USE CASE # UC1.00 3

USE CASE Name Duplicating irrigation plots

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) To create duplicates of existing irrigation plots, particularly useful when
crops change

Overview and scope Farmers can duplicate their own irrigation plots

Agricultural organizations can duplicate irrigation plots on behalf of their
owners (farmers)

System administrator can duplicate all irrigation plots.

Preconditions Actor has a valid account on the ENORASIS system

The data of the irrigation plot to be duplicated should have already been
entered

Post conditions in words Irrigati on plots and their characteristics are saved to the database and
the performed action is recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

2. Actor locates the land

where the irrigation plot of
interest is located

 3. System shows the land properties

and a list of the irrigation plots located
in this land. For each irrigation plot the
system presents the option ñDuplicate
land zoneò

3. Actor selects the option
ñDuplicate irrigation plotò

 4.System asks for actor confirmation to

create a duplicate for the specific
irrigation plot

5.Actor confirms the creation
of the new irrigation plot

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 34

 6.The action is submitted to the system,

the duplicate irrigation plot is created
and the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

UNSUCCESSFUL
SCENARIOS

Conditions Actions

2a. 3a. 5a. User abandons The actor abandons the performed
operation.

ACTIVITY DIAGRAM

TEST DATE and NUMBER 18. September 2013. UC1.003 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Use case does not exist in current system.

TEST MISSION ERRORS

3.4.1.4 [UC1.004] Administering sensors

USE CASE # UC1.00 4

USE CASE Name Administering sensors

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) To create, update, delete sensors and set the irrigation plots that the
sensor provides data for and also set the minimum and maximum value
that will trigger an alert for the specific sensor.

Overview and scope Farmers can administer sensors

Agricultural organizations can administer sensors on behalf of their

Duplicate land
zone

View
landzones

Update
database
and logs

NO

YES

Confirmation on
duplicating
landzone

Start

Login

End

Search land

YES

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 35

farmers

Preconditions Actor has a valid account on the ENORASIS system

The land data should have already been entered in the system so they
can be matched with sensors that provide data on their behalf

For retrieving sensor data (any actor), the sensorôs data should have
already been entered on the ENORASIS system

Post conditions in words Sensors are saved or removed from the database and the performed
action is recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

 2. System presents user with the

options ñCreate new sensor ò, ñSearch
sensor ò

3. Actor picks the option

ñCreate new sensorò, defines
the sensor details, assigns it
to a land, chooses the
irrigation plot (s)it measures
and submits it to the system

 4.The action is submitted to the system
and the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

3a. ñSearch sensorò The actor instead of picking the ñcreate

new sensorò option, picks ñsearchò.
Using this option the actor can locate a

sensor using search filters. When the
actor traces the sensor of interest, he
gets two new options ñupdateò, ñdeleteò

3a1. ñUpdate sensorò The actor picks the option ñupdateò so
he can change the sensor details

3a2. ñDelete sensorò The actor picks the option ñdeleteò so he
can erase the selected sensor. The

system asks for actor confirmation and
the actor confirms the deletion of the
sensor.

UNSUCCESSFUL
SCENARIOS

Conditions Actions

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 36

ACTIVITY DIAGRAM

TEST DATE and NUMBER 18. September 2013. UC1.004 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User goes successfully through the ENORASIS login system.

2. System presents user with the options ñCreate new related sensorò.

3. User picks the option ñCreate new related sensorò, defines the sensor

details, assigns it to a plot, chooses the irrigation plot(s) it measures and

submits it to the system.

4. The action is submitted to the system and the logs are updated.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.004 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñEdit sensorò.

The user picks the option ñEditò so he can change the sensor details.

System successful update data.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.004 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñDelete sensorò.

The user picks the option ñdeleteò so he can erase the selected sensor.

The system asks for actor confirmation and the user confirms the deletion

of the sensor.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.004 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. On creation sensor user cannot save new sensor if there is no data in

field ñSerial numberò although there is no ñRequired fieldò note.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.004 #5

Create sensor
OR

Search

Create new sensor

Insert sensor
data and
submit

Update
database
and logs

Search
results

Search

Edit
OR

Delete

Confirmation
on deleting

Edit sensor

Delete sensor

NO

YES

Start

Login

End

Update
sensor data

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 37

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User create new sensor with same name as one that is already

created.

2. System allow user to save new sensor, and two sensors with same

name appear in list.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.004 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS At Field page on sensors list tab, there is no type of sensors that are

created. After reload page manually it appears.

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC1.004 #7

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User create 3 new sensors from field page and then reload page

manually. Then create one more. Next go to plot page and only one

sensor appear in list although all are assigned to that plot.

2. After reload page manually all sensors appear in list.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.004 #8

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. In ñMy Fieldsò table for all fields there are 0 sensors and 0 valves

although they have sensors and valves attached to them.

TEST MISSION ERRORS

3.4.1.5 [UC1.005] Administering water valves

USE CASE # UC1.00 5

USE CASE Name Administering water valves

ACTOR Farmer

Agricultural Organizations

Watering Authorities

System administrator

Purpose (1 phrase) To create, update, delete water valves

Overview and scope Farmers can create water valves and only administer water valves that
belong to them

Agricultural organizations can administer water valves on behalf of their
farmers

Watering authorities can view water valves belonging to their customers

Preconditions Actor has a valid account on the ENORASIS system

For retrieving water valve data (any actor), the water valveôs data should
have already been entered on the ENORASIS system

Post conditions in words Water valves are saved or removed from the database and the performed
action is recorded in the logs

Trigger -

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 38

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

 2. System presents user with the

options ñCreate new water valve ò,
ñSearch water valve ò

3. Actor picks the option

ñCreate new water valveò,
defines the new water valve
details, assigns it to a land

and selects the irrigation
plot (s)it waters and submits it
to the system

 4.System asks for actor confirmation

5.Actor confirms the creation
of the new water valve

 6.The action is submitted to the system
and the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

3a. ñSearch water valveò The actor instead of picking the ñcreate

new water valveò option, picks ñsearchò.
Using this option the actor can locate a

water valve using search filters. When
the actor traces the water valve of

interest, he gets two new options
ñupdateò, ñdeleteò

3a1. ñUpdate water valveò

The actor picks the option ñupdateò so
he can change the water valve details.

3a2. ñDelete water valveò The actor picks the option ñdeleteò so he

can erase the selected water valve. The
system asks for actor confirmation and
the actor confirms the delet ion of the
water valve.

UNSUCCESSFUL
SCENARIOS

Conditions Actions

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 39

ACTIVITY DIAGRAM

TEST DATE and NUMBER 18. September 2013. UC1.005 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User goes successfully through the ENORASIS login system.

2. System presents user with the options ñCreate new related valveò.

3. User picks the option ñCreate new related valveò, defines the new

water valve details, assigns it to a land and selects the irrigation plot(s) it

waters and submits it to the system.

6. The action is submitted to the system and the logs are updated.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.005 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñEdit water valveò.

The user picks the option ñEditò so he can change the water valve details.

After update fields click on ñsave changes buttonò will update data to

system.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 18. September 2013. UC1.005 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User create new valve with same name as one that is already created.

2. System allow user to save new valve, and two with same name appear

in list.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.005 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñDelete valveò.

The user picks the option ñdeleteò so he can erase the selected water

Create new
valve
OR

Search

Create new valve

Insert valve
data and
submit

Update
database
and logs

YES

Search
results

Search

Edit
OR

Delete

Delete
confirmation

Edit valve
Delete valve

YES

Start

Login

End

Update
valve data

NO

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 40

valve.

2. The system asks for user confirmation and the actor confirms the

deletion of the water valve.

3. But system DO NOT allow user to delete valve.

TEST MISSION ERRORS

TEST DATE and NUMBER 18. September 2013. UC1.005 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. On ñEdit valveò after user delete name ñRequired fieldò notification

appear but leaving blank and click on save changes will submit operation

and valve without name will appear in list.

Same with serial key and API key.

TEST MISSION ERRORS

TEST DATE and NUMBER 20. September 2013. UC1.005 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. There is no type listed on ñRelated valvesò table. After reload page

manually it appears.

TEST MISSION ERRORS

3.4.1.6 [UC1.006] Administering land permissions

USE CASE # UC1.00 6

USE CASE Name Administering land permissions

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) To manage permissions for lands

Overview and scope Farmers and Agricultural organizations can administer permissions only

for lands they own (they must be set as owners of these lands) therefore
the system should allow for setting permissions on lands for the system
actors

Preconditions Actor has a valid account on the ENORASIS system

The land data should have already been entered on the ENORASIS
system

Post conditions in words Land permissions are saved and the perfo rmed action is recorded in the
logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

 2. System presents user with the
option ñ Search landò

3. Actor locates the land of
interest using search filters

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 41

 4. System presents the users that

already have permission to access the
specific land and shows the options ñAdd
userò, ñEdit userò, ñDelete userò.

5. Ac tor chooses the option
ñAdd userò, enters the userôs
email address and defines the

permissions that the user is
going to have on the land.
Finally the actor submits the
data to the system

 6. System asks for actor confirmation

7.Actor confirms the action

 8.The action is submitted to the system
and the logs are updated

 9. The system forwards a request for
approval to the user

 10. Once the user approves the request,
the actor is also notified of the approval

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

5a. Actor picks the option
ñEdit userò

The actor instead of picking the ñAdd

userò option picks ñEdit userò. Using this
option the actor can edit the permissions
he has already given to the selected

user

5b. Actor picks the option
ñDelete userò

The actor picks the option ñDelete user
permissionsò so he can remove the

permissions he has given to the selected
user

UNSUCCESSFUL
SCENARIOS

Conditions Actions

5a. Actor has already set

permissions for the selected
user

The system notifies the user that he has

already given permissions to the
selected user

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 42

ACTIVITY DIAGRAM

TEST DATE and NUMBER 20. September 2013. UC1.006 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor goes successfully through the ENORASIS login system.

2. System presents the users that already have permission to access the

specific land and shows the options ñAssignò and ñDeleteò user.

3. Actor enters the userôs email address and defines the permissions that

the user is going to have on th e land and chooses the option ñAssignò.

Finally the actor submits the data to the system.

4. The action is submitted to the system and the logs are updated. User

appears in list of field permissions.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 20. September 2013. UC1.006 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS There is no ñEdit userò option.

TEST MISSION ERRORS

TEST DATE and NUMBER 20. September 2013. UC1.006 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. The user picks the option ñDeleteò user permissions so he can remove

the permissions he has given to the selected user.

2. But system sometimes print message ñYou do not have permissions to

access this pageò even if Iôm logged in as administrator who create that

user that I want to delete. Sometimes it brings back to previous (field

list) page and again nothing happens. User still exists in list.

TEST MISSION ERRORS

TEST DATE and NUMBER 20. September 2013. UC1.006 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor has already set permissions for the selected user and type email

that already exist in list.

View land
permissions

Save in
database
and logs

YES

Add, edit
or delete

user

Start

Login

End

Insert
permissions

Edit
permissions

Confirmation
on inserting

Confirmation
on editing

Confirmation
on deleting

YES

YES

Insert Edit
Delete

Search land

NO

NO

NO

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 43

2. The system notifies the user that ñsomething went wrongò but maybe

it is better to say that user with same email and permission is already

assigned to fie ld. This happened only when email and role are the same

as one that is already in list.

3. If user chose to add same email but different role there will be user

with same name but two different roles.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC1.006 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS I log in as notadmin @uns.ac.rs user, but before that an administrator

account attach notadmin user to one field with read -write permissions.

1. In first case user can see only field that he is assigned to.

2. In other he can see all fields although he is not assigned to them .

These two cases take turns random it seems.

But when I reload page it will be only one field (like it should be I guess).

TEST MISSION ERRORS

TEST DATE and NUMBER 24. September 2013. UC1.006 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User that is not administrator, farmer for e.g., change field

permissions to ñread onlyò for an administrator account.

2. Administrator now does not have any control of any data for that

field.

3. This is in contribution for e.g. with use case UC2.001 (and some

others) which say:

ñSystem administrators can insert/update sensors data for any irrigation

plot in the system ò.

TEST MISSION ERRORS

3.4.1.7 [UC1.007] Retrieve alerts

USE CASE # UC1.00 7

USE CASE Name Retrieve alerts

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) To view alerts from the ENORASIS system.

Overview and scope Farmers can view alerts

Agricultural organizations can view alerts on behalf of their owners
(farmers)

Preconditions Actor has a valid account on the ENORASIS system

Post conditions in words Alerts are displayed to the actor

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL Actor Action System Action

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 44

SCENARIO in numbered
sequence

1. Actor goes successfully

through the ENORASIS login
system

 2. Syste m presents user with the option
ñView Alerts ò

3. Actor selects the option
ñView Alertsò

4. Actor chooses the type of
alert he wants to view

 5.System presents the alerts of the
selected type to the user

OTHER SUCCESSFUL

SCENARIOS

Step Branching Action

UNSUCCESSFUL
SCENARIOS

Conditions Actions

ACTIVITY DIAGRAM

TEST DATE and NUMBER 18. September 2013. UC1.007 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Use case does not exist in current system.

Instead of those se case there is menu on right side with all related

system actions in past time (errors, warnings, and informations).

TEST MISSION ERRORS

3.4.1.8 [UC2.001] Manual inserts of sensors data

Select alert type

View alerts

Start

Login

End

View alerts

YES

NO

USE CASE # UC2.001

USE CASE Name Manual inserts of sensors data

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) Manual inserts of sensors data

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 45

Overview and scope Actors can insert new measurements data or modify the existing. This is

intended for cases where the on - line measurement systems do not exist
or are not functioning properly

Actors can only update or insert measurements according to their role:

¶ Farmers can insert/update sensors data for their own irrigation

plots only

¶ Agricultural organizations can insert/update sensors data for

irrigation plots that belong to their registered farmers

¶ System administrators can insert/update sensors data for any

irrigation plot in the system

Preconditions Actor has a valid account on the ENORASIS system

The irrigation plot s have been created in the land subsystem

Sensors have been assigned to the irrigation plot s

Post conditions in words Measurements data are saved in the database and the performed action
is recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

2. Actor locates the sensor for

which he will add
measurements using search
filters

 3. System fetches measurements data

from the database about the specific
sensor. All existing measurements have
a ñdeleteò option and at the bottom of
the list there is an option for ñadd new
measurementò

4. Actor picks to ñadd new

measurement ò, selects a date,
enters the measurement
value(s), selects the irrigation

plot(s) that this measurement
refers to and submits the data
to the system

 5.The system validates the

measurement value(s)and if it is valid
the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

4a. Delete sensor data The actor instead clicks on the ñdeleteò

option next to a sensor measurement,
so he can remove the selected

measurement. The system asks for
actor confirmation and the actor
confirms the deletion of the sensor
measurement. Go to step 5.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 46

TEST DATE and NUMBER 22. September 2013. UC2.001 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor goes successfully through the ENORASIS login system.

2. Actor locates the sensor for which he will add measurements.

3. System fetches measurements data from the database about the

specific sensor.

4. There is an option for ñadd new measurementò.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 22. September 2013. UC2.001 #2

2a. 4a. User abandons Actor chooses to abandon the operation

UNSUCCESSFUL
SCENARIOS

Conditions Actions

4a. The sensor has not been
matched to any irrigation plot

Return to step 2. The user must assign
the sensor to at least one irrigation plot.

5a. Data validation fails The value(s) inserted was not valid.
Return to step 3

ACTIVITY DIAGRAM

Start

Login

Update
database
and logs

Search for sensor
in the system

Add new
measurement OR

delete measurement

Insert

Insert new
measurement

data

Is the
measurement

valid?

NO

Delete

Was the sensor
found?

YES

NO

End

View
measurement

data

YES

Confirm action

YES

NO

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 47

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. All existing measurements DO NOT have a ñdeleteò option.

2. If user wants to delete some data from sensors he need to delete

sensor itself because that option is only presented (delete button for

sensor). Either way it is also not possible since system return error ï

ñCould not delete recordò. So user canôt delete sensors that have active

last readings.

3. Those without readings can be deleted fine.

4. Can add measurements only for ñtodayò, canôt select date. Also once

system adds data there is no way to delete them or modify.

TEST MISSION ERROR

TEST DATE and NUMBER 22. September 2013. UC2.001 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor picks to ñadd new measurementò (but cannot selects a date),

enters the measurement value(s), and submits the data to the system.

2. On creation of sensor user alre ady assigned sensor to plot(s).

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 22. September 2013. UC2.001 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. The system validates the measurement value(s) and if it is valid the

logs are updated. Not validated data are cut off. Good thing that system

will cast off measurements that are not correctly filled (e.g. in 14h

system finds that user put letters for temperature measurement).

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 22. September 2013. UC2.001 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Also if user put data measurements two times for same day (since I

canôt chose date) there will be, for same sensor, two readings at same

time that differ.

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC2.001 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Logs are update ONLY after page is reloaded manually. Until that there

is still òLast reading-newerò field. So assume data is updated to system

but no automatic refresh of ñnotification fieldsò.

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC2.001 #7

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User chose to change (edit) sensor type from one to another type.

2. Data that already exist, and was entered manually will be assigned to

another type although their values are not in correspondence with new

type values expectation. User can think that he is importing data for

example temperature sensor, and then realize and change that sensor to

wind speed, but no option to delete data (and maybe to automatically

delete manu ally inserted data).

TEST MISSION ERRORS

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 48

TEST DATE and NUMBER 22. September 2013. UC2.001 #8

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Delete sensor data.

No delete option measurement, and not quite clear how to correct data if

for e.g., typing mistake appear. Cannot delete, cannot overwriteé

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC2.001 #9

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User abandons.

There is no cancel button or back button to exit without save.

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC2.001 #10

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. The sensor has not been matched to any irrigation plot . The user must

assign the sensor to at least one irrigation plot ï Implemented in other

way then in use case and adding measurements means we need to go

into plot page and there will not be sensors without plot assigned.

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC2.001 #11

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Data validation fails.

The value(s) inserted was not valid. System will cut them off.

TEST MISSION ACCOMPLISHED

3.4.1.9 [UC2.002] Manual inserts of water valves data

USE CASE # UC2.00 2

USE CASE Name Manual inserts of water valves data

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) Manual inserts of water valves data

Overview and scope Actors can insert new water consumption data or modify the existing.

This is intended for cases where the on - line measurement systems
do not exist or are not functioning properly

Actors can only update or insert water consumption measurements
according to their role:

¶ Farmers can insert/update water usage data for their own

irrigation plots only

¶ Agricultural organizations can insert/update water usage

data for irrigation plots that belong to their registered

farmers

¶ Water authorities can insert/update water usage data for

irrigation plots that belong to their registered farmers

¶ System administrators can insert/update water usage data

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 49

for any irrigation plot in the system

Preconditions Actor has a valid account on the ENORASIS system

The irrigation plot s ha ve bee n created in the land subsystem

Water valves have been assigned to the irrigation plots

Post conditions in words Water consumption measurement is saved in the database and the
performed action is recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully
through the ENORASIS
login system

2. Actor locates the water
valve for which he will add

measurements using
search filters

 3. System fetches measurements data
from the database about the specific

water valve. All existing measurements
have a ñdeleteò option and at the
bottom of the list there is an option for
ñadd new measurementò

4. Actor picks to ñadd new

measurement ò, selects a
date, enters the
measurement value(s),
selects the irrigation
plot(s) that this

measurement refers to
and submits the data to
the system

 5.The system validates the data inserted

and if it is valid, it asks for actor
confirmation

OTHER SUCCESSFUL

SCENARIOS

Step Branching Action

4a. Delete water valve
data

The actor instead clicks on the ñdeleteò
option next to a water valve

measurement, so he can remove the
selected measurement. The system
asks for actor confirmation and the actor
confirms the deletion of the
measurement. Go to step 5.

2a. 4a. User abandons Actor chooses to abandon the operation

UNSUCCESSFUL
SCENARIOS

Conditions Actions

4a. The water valve has
not been matched to any
irrigation plot

Actor must assign the water valve to at
least one irrigation plot.

5a. Data validation fails The value(s) inserted was not valid.
Return to step 3

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 50

TEST DATE and NUMBER 22. September 2013. UC2.002 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor goes successfully through the ENORASIS login system.

2. Actor locates the water valve for which he will add measurements (no

option for using search filters).

3. System fetches measurements data from the database about the

specific water valve. Al l existing measurements do not have ñdeleteò

option and there is an option for ñadd water irrigation amountò.

4. Actor picks to ñadd water irrigation amountò, no option to selects a

date, enters the measurement value(s), and submits the data to the

system.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 22. September 2013. UC2.002 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. The system validates the data inserted. But data entered for one valve

will appear in all other valve database related to one plot.

TEST MISSION ERRORS

ACTIVITY DIAGRAM

Start

Login

Update
database
and logs

Search for water
valve in the

system

Add new
measurement OR

Delete measurement

Insert

Insert new
measurement

data

Is the
measurement

valid?

NO

Delete

Was the water
valve found?

YES

NO

End

View
measurement

data

YES

Confirm action

YES

NO

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 51

TEST DATE and NUMBER 22. September 2013. UC2.002 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Delete water valve data

No delete option measurement, and not quite clear how to correct data if

for e.g., typing mistake appear. Cannot delete, cannot overwriteé

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC2.002 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS User abandons.

There is no cancel button or back button to exit without save.

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC2.002 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. The water valve has not been matched to any irrigation plot.

The user must assign the valve to at least one irrigation plot ï

Implemented in other way than in use case and adding measurements

means we need to go into plot page and there will not be sensors without

plot assigned.

TEST MISSION ERRORS

TEST DATE and NUMBER 22. September 2013. UC2.002 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Data validation fails - The value(s) inserted was not valid. System will

cut them off.

TEST MISSION ACCOMPLISHED

3.4.1.10 [UC2.003] Sensor data imported in the system

USE CASE # UC2.00 3

USE CASE Name Sensor data imported in the system [System]

ACTOR [System]

Purpose (1 phrase) To update the system database with measurements that sensors installed
in the irrigation plots send automatically.

Overview and scope The system receives measurements from online sensors (deployed in the
irrigation plots) automatically, and inserts those in the database. That
way the system is aware of the conditions in the fields and it can feed
that information as input to the decision support subsystem.

Preconditions There are sensors deployed in the irrigation plots with an online
connection to the internet .

The sens ors with their characteristics are entered in the database and

connected/related to the irrigation plots they were installed at .

The sensors should be able to send data using a predefine d format to a
given web service that will be provided by the system.

The sensors should provide an authorization token that will match one on
the systemôs database in order to verify its identity.

Post conditions in words Sensor measurements are saved in the database and the performed
action is recorded in the logs

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 52

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Sensor or sensor base
station packs the

measurement data to a format
by the system and submits
them to a systemôs web
service together with an
authorization token that has
been provided by the system

 2. System checks that the authorization

token provided by the sensor is valid
and exists in the system database.

 3. System checks that all the
measurements are in the correct format

 4. Pass data through a quality control

process to verify that all measurements
are inside acceptable limits

 5. System imports data into the

database, updates the log file and

responds to the sensor with a success
message

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

- -

UNSUCCESSFUL
SCENARIOS

Conditions Actions

2. Authorization token doesnôt
match one in the systemôs
database

Abort process, respond with a
ñauthorization failureò message to the

sensor request and update the log with
the failed attempt

 3. Data in incorrect format Abort process, respond with a ñfailure ï

incorrect formatò message to the sensor

and update the log with the failed
attempt

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 53

ACTIVITY DIAGRAM

TEST DATE and NUMBER 22. September 2013. UC2.003 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Preconditions from use case document not satisfied .

Didnôt have access to sensor connected to internet.

TEST MISSION ERRORS

3.4.1.11 [UC2.004] Water valve data imported in the system

USE CASE # UC2.004

USE CASE Name Water valve data imported in the system[System]

ACTOR [System]

Purpose (1 phrase) To update the system database with data that water valves installed in the

fields (by Farmers, Agricultural organizations or Water authorities are) are
sent automatically to the system.

Overview and scope The system receives measurements from online and authorized water

valves (deployed in the fields) automatically, and inserts those in th e
database. That way the system is aware of the amount of water each field
has used.

Preconditions There are water valves deployed in the fields with an online connection to
the internet .

The water valves with their characteristics are entered in the database and
connected/related to the fields they were installed at .

The sensors should be able to send data using a predefined format to a
given web service that will be provided by the system.

The sensors should provide an authoriza tion token that will match one on
the systemôs database in order to verify its identity.

Post conditions in words Water valve measurements are saved in the database and the performed
action is recorded in the logs

Trigger -

Start

Authorization
token is valid?

Save in
database
and logs

NO

YES

Measurements
pass quality control

check?
NO

End

Respond
with

appropriate
error

message

Save
in logs

Data are in
correct format?

YES

YES

NO

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 54

Included Use Cases -

Exten ded Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Sensor or sensor base

station packs the
measurement data to a

format by the system and
submits them to a systemôs
web service together with an
authorization token that has
been provided by the system

 2. System checks that the authorization

token provided by the water valveis valid
and exists in the system database

 3. System checks that all the
measurements are in the correct format

 4. Pass data through a quality control
process to verify that all measurements are
inside acceptable limits

 5. System imports data into the database,

updates the log file and responds to the
sensor with a success message

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

- -

UNSUCCESSFUL
SCENARIOS

Conditions Actions

2. Authorization token

doesnôt match one in the
systemôs database

Abort process, respond with a

ñauthorization failureò message to the
sensor request and update the log with the
failed attempt

 3. Data in incorrect format Abort process, respond with a ñfailure ï

incorrect formatò message to the sensor
and update the log with the failed attempt

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 55

ACTIVITY DIAGRAM

TEST DATE and NUMBER 22. September 2013. UC2.004 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Preconditions from use case document not satisfied .

Didnôt have access to valve connected to internet.

TEST MISSION ERRORS

3.4.1.12 [UC2.005] Automatic import of weather predictions in the system

USE CASE # UC2.005

USE CASE Name Automatic import of weather predictions in the system [System]

ACTOR [System]

Purpose (1 phrase) To update the system database with predicted weather conditions.

Overview and scope An authorized weather prediction service will be able to update the

system database through a provided web service with predicted
information (temperature, wind speed, wind direction, humidity) about
the weather conditions for future dates on specific locations. This way the
system will be able inform its users of the wea therôs conditions the next

couple of days and have this information available to the decision support
subsystem

Preconditions The weather prediction service should be able to send data using a

predefined format to a given web service that will be provided by the
system

The weather prediction service should provide an authorization token that
will match one on the systemôs database in order to verify its identity

Post conditions in words Weather prediction data are inserted into the system database and th e
log is updated

Trigger -

Start

Authorization
token is valid?

Save in
database
and logs

NO

YES

Measurements
pass quality control

check?
NO

End

Respond
with

appropriate
error

message

Save
in logs

Data are in
correct format?

NO

YES

YES

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 56

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Weather prediction service

packs the measurement and
location data to a format by

the system and submits them
to a systemôs web service
together with an authorization
token that has been provided
by the system

 2. System checks that the authorization

token provided by the weather

prediction service is valid and exists in
the system database

 3. System checks that all the

measurements and location data are in
the correct format

 4. Pass data through a quality control

process to verify that all measurements
are inside acceptable limits

 5. Check that location boundaries exist
and do not overlap each other

 6. System imports data into the

database, updates the log file and
responds to the weather prediction
service with a success message

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

-

UNSUCCESSFUL
SCENARIOS (erroneous
situations)

Conditions Actions

2. Authorization token doesnôt

match one in the systemôs
database

Abort process, respond with a

ñauthorization failureò message to the
weather prediction service request and
update the log with the failed attempt

3. Data in incorrect format Abort process, respond with a ñfailure ï

incorrect formatò message to the
weather prediction service request and
update the log with the failed attempt

4. Data did not pass quality
control process

Abort process, respond with a ñfailure ï
invalid measurementsò message to the

weather prediction service request and
update the log with the failed attempt

5. Data contain invalid
location data

Abort process, respond with a ñfailure ï

invalid locationò message to the weather
prediction service request and update
the log with the failed attempt

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 57

ACTIVITY DIAGRAM

TEST DATE and NUMBER 22. September 2013. UC2.005 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS If this use case is related to weather forecast table then all seams fine.

TEST MISSION ACCOMPLISHED

3.4.1.13 [UC2.006] Preview weather forecast

USE CASE # UC2.006

USE CASE Name Preview weather forecast

ACTOR Farmer

Agricultural organizations

Water authorities

System administrator

Purpose (1 phrase) To provide to the actor future weather con ditions for a specific location

Overview and scope Uses the data that have been provided by the weather prediction

service, to present temperature, wind and other given measurements.
The actor is able to select the date (current and future) of the
measurements that are displayed as well as hide or show specific types
of measurements

Preconditions Weather prediction data have been successfully inserted into the

system database as described by the «[UC2.005] Automatic import of
weather predictions in the system »

Post conditions in words -

Trigger

Included Use Cases -

Extended Use Cases -

Start

Authorization
token is valid?

Save in
database
and logs

NO

YES

Measurements
pass quality control

check?
NO

End

Respond
with

appropriate
error

message

Save
in logs

Data are in
correct format?

Location data
are valid?

NO

NO

YES

YES

YES

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 58

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

 1. Actor goes successfully

through the ENORASIS
login system

 2. Actor locates the land

of interest using search
filters, chooses a date and
selects the option ñView
Reportò

 3. System presents a map containing

forecast information for the selected land

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

4a. Actor checks the

option to ñShow predicted
temperatureò

System adds a layer on the map that

shows temperature on each location using
the data from the system database that
have been provided by the weather
prediction provider

 4b. Actor checks the

option to ñShow predicted
wind speedò

System adds a layer on the map that

shows wind speed on each location using
the data from the system database that
have been provided by the weath er
prediction provider

 4c. Actor checks the

option to ñShow predicted
humidityò

System adds a layer on the map that

shows humidity on each location using the
data from the system database that have
been provided by the weather prediction
provider

 4d. Actor changes the
prediction date using a
slider

System changes the visible layers to
display the weather prediction data for the
actor specified date

UNSUCCESSFUL
SCENARIOS (erroneous
situations)

Conditions Actions

6a. Actor checks an

option to show a
predicted measurement
for a specific date that
data are not available.

System displays an error message to the

actor explaining that the current date and
measurement selection has no available
weather prediction data.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 59

ACTIVITY DIAGRAM

TEST DATE and NUMBER 22. September 2013. UC2.006 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS There are no such options like in this use case. Only Weather Forecast

table with t hree days and t hree different sources .

TEST MISSION ERRORS

3.4.1.14 [UC3.001] Preview irrigation plan

Start

Login

Search land

Add layer on
map?

End

View
forecast

View forecast

Select layer YES

NO

USE CASE # UC3 .001

USE CASE Name Preview irrigation plan

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) Provide to the actor the watering suggestions from the decision support
system.

Overview and scope Actors are able to choose a plot and view the watering options that the

decision support system has suggested for a given amount of days and
have the option to enable or disable the automatic watering system if
that is available for the chosen plot .

Preconditions The DSS has generated a watering suggestion for the selected plot .

Post conditions in words -

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully
through the ENORASIS login
system

2. Actor locates the plot of
interest using search filters or

the embedded GPS and
chooses to view the irrigation
plan.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 60

TEST DATE and NUMBER 23. September 2013. UC3.001 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor locates the plot of interest and chooses to view the irrigation

plan.

2. System presents actor with the DSS suggestions for the selected plot.

3. Actor enables automatic watering.

4. System updates the actorôs selection and updates the log file.

TEST MISSION ACCO MPLISHED

TEST DATE and NUMBER 23. September 2013. UC3.001 #2

 3. System presents actor with the DSS
suggestions for the selected plot.

3. Actor enables automatic
watering.

 4.System updates the actorôs selection
and updates the log file

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

3a. Actor disables automatic
watering.

UNSUCCESSFUL
SCENARIOS

Conditions Actions

1a. Actor selects a plot with
no available suggestions.

System informs user that there are no
available predictions.

ACTIVITY DIAGRAM

Start

Actor selects plot

DSS has available
data suggestions for

selected plot?

Save in
database
and logs

System displays
suggestions to

actor.

NO

YES

Actor enables
or disables
automatic
watering

YES

YES

End

No

Login

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 61

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor disables automatic watering by click on on/off button.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC3.001 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. System represents previous Dss results, with date, time and liters to

be watered that day.

2. System also enable user to see dss inputs from sensors and weather

forecast results used for calculation for decisions.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC3.001 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor selects a plot with no available suggestions.

2. System print message ñThere are no Dss results available for todayò.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC3.001 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Also there is option to export dss data used for calculation.

TEST MISSION ACCOMPLISHED

3.4.1.15 [UC3.002] Run DSS

TEST DATE and NUMBER 23. September 2013. UC3.002 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS DSS execution seems to work fine

TEST MISSION ACCOMPLISHED

3.4.1.16 [UC4.001] Administering users

USE CASE # UC4 .001

USE CASE Name Administering users

ACTOR Farmer

Agricultural Organizations

Watering Authorities

System administrator

Purpose (1 phrase) To create, update, delete users

Overview and scope Farmers can create user accounts and update only their own user profile

Agricultural organizations can create user accounts and upda te accounts
that they are owners

Watering Authorities can create user accounts and upda te accounts that
they are owners

System administrators can create and update any user account on the
system

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 62

Preconditions Actor has a valid account on the ENORASIS system

For retrieving user data (any actor), the user data should have already
been entered on the ENORASIS system

Post conditions in words Users are saved or removed from the database and the performed action
is recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

 2. System presents user with the

options ñCreate new userò, ñSearch
userò

3. Actor picks the option

ñCreate new userò, defines the
new user details, picks a user
role and submits the data to
the system

 4.The action is submitted to the system
and the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

3a. ñSearch userò The actor instead of picking the ñCreate
new userò option picks ñSearch userò.
Using this option the actor can locate a

user using search filters. Actor only sees
users he owns (has been created by
him). When the actor traces the user of
interest, he gets two new options
ñUpdate userò, ñDelete userò

3a1. ñUpdate userò The actor picks the opti on ñUpdate userò
so he can change user characteristics

3a2. ñDelete userò The actor picks the option ñDelete userò

so he can delete the selected user. The
system informs the actor that deleting
the user will also delete all the records

connected to the user, asks for actor
confirmation and the actor confirms the
deletion of the user.

UNSUCCESSFUL
SCENARIOS

Conditions Actions

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 63

ACTIVITY DIAGRAM

TEST DATE and NUMBER 23. September 2013. UC4.001 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor goes successfully through the ENORASIS login system.

2. If user have administrator privileges system will present
ñAdministrationò menu.

3. User chose user tab.

4. User chose to create new user but system not allow him to save
record. ñCould not save recordò error appear.

5. But user anyway appears in list.

6. Then I just reload page and nothing more, user does not appear in list.

7. If I try to create user that already exist it will pass successful and two

users will appear in list.

TEST MISSIO N ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.001 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. User chose to edit existing user.

2. Type date in fields again and save changes.

3. System does not overwrite existing user, but create new. So if I want
to change only phone number for e.g. there will be one with old phone
and one with now information.

4. Both users appear in list.

5. Also, w hen I try to edit that user, all fields ar e empty . But if I chose
user that is in list already (not that I just create) there are information in
fields related to that user.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.001 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Using the REST API anyone can create the administrator user .

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.001 #4

Create new user
OR

Search

Create new user

Insert user
data and
submit

Save in
database
and logs

Search
results

Search

Edit
OR

Delete

Confirmation
on deleting

Edit user Delete user NO

YES

Start

Login

End

Update user
data

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 64

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Delete user works fine with administrator privileges.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC4.001 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. When I create or edit user I check boxes Is active? and Is supervisor?

2. In user list there is message that this user is not supervisor or active.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.001 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS In general creating user from web application does not work fine for me
so all other errors I assume are related to general upper problem.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.001 #7

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS When user log in to system as not administrator, he cannot add or
change user. User menu does not exist.

TEST MISSION ACCOMPLISHED

3.4.1.17 [UC4.002] Administering roles

USE CASE # UC4 .00 2

USE CASE Name Administering roles

ACTOR System administrator

Purpose (1 phrase) To create, update, delete user roles

Overview and scope System administrator can administer user roles

Preconditions Actor has a valid account on the ENORASIS system

For retrieving user data (any actor), the user data should have already
been entered on the ENORASIS system

Post conditions in words Roles are saved or removed from the database and the performed action

is recorded in the logs

Trigger -

Included Use Cas es -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully
through the ENORASIS login
system

 2. System presents user with the

options ñCreate new roleò, ñUpdate
roleò, ñDelete roleò

3. Actor picks the option

ñCreate new roleò and defines
the new role details and
submits it to the system

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 65

 4.The action is submitted to the system
and the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

3a1. ñSearch roleò The actor instead of picking the ñCreate

new roleò option picks ñSearch roleò.
Using this option the actor can locate a
role using search filters. When the actor
traces the role of interest, he gets two
new options ñUpdate roleò, ñDelete roleò

3a1. ñUpdate roleò The actor picks the option ñUpdate roleò
so he can change the role data

3b2. ñDelete roleò The actor picks the option ñDelete roleò

so he can delete the selected role. The

system asks for actor confirmation and
the actor confirms the deletion of the
role

UNSUCCESSFUL
SCENARIOS

Conditions Actions

ACTIVITY DIAGRAM

TEST DATE and NUMBER 23. September 2013. UC4.002 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS This seems not implemented into system. If it is related to User types

option under Administration field, then only new type with new name can
be created and nothing else. Not sure what others privileges (and how to
specify them) are assigned with that new user type.

TEST MISSION ACCOMPLISHED

3.4.1.18 [UC4.003] Retrieve system and usage reports

USE CASE # UC4.003

USE CASE Name Retrieve system and usage reports

ACTOR Farmer

Agricultural Organizations

Create new role
OR

Search

Create new role

Insert role data
and submit

Save in
database
and logs

Search
results

Search

Edit
OR

Delete

Confirmation
on deleting

Edit role

Delete role

NO

Start

Login

End

Update role
data

YES

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 66

Watering Authorities

System administrator

Purpose (1 phrase) To view and export reports from the ENORASIS system.

Overview and sco pe Farmers can retrieve reports about their irrigation plots, sensors and
water valves. Also, they can retrieve reports about their irrigation plans

Agricultural organizations can retrieve reports for lands/irrigation plots
they have been granted the ñviewò right

Watering authorities can retrieve reports for lands/irrigation plots they
have been granted the ñviewò right

System administrators can retrieve reports about systems actions audited

in the system logs

Preconditions Actor has a valid account on the ENORASIS system

For retrieving reports about irrigation plot s/sensors/water valves, the
relevant data should have already been entered on the ENORASIS system

Post conditions in words System and usage reports are presented to the actor.

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

 2. Syste m presents user with the option
ñView Reports ò

3. Actor selects the option
ñView Reportsò

4. Actor chooses the type of

report he wants to view and a
specific date range

 5.System presents the report for the
specific date range to the user

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

UNSUCCESSFUL
SCENARIOS

Conditions Actions

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 67

ACTIVITY DIAGRAM

TEST DATE and NUMBER 23. September 2013. UC4.003 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS This seems not implemented into system. All reports are shown at the
right side of home page. User is presented with following tabs:

1. Overview

2. DSS Execution -Valve actions

3. Rest API

4. DSS Calculation

5. Read SOS sensors

6.Universal connector

There will be presented all errors, warnings and information require d for
proper system operation .

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC4.003 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Date range is not specify. It is not possible to filter some data, and (I

assume) there can be sliding window with a lot of information. There is
nothing like to cut off those reports which user saw already. Also not sure

how to check are those reports del ete automatically in some period of
time so I report this as possible gui ñrevisionò.

TEST MISSION ERRORS

3.4.1.19 [UC4 .00 4] Administering crop types

USE CASE # UC4 .00 4

USE CASE Name Administering crop types

ACTOR Farmers

Agricultural Organizations

System administrator

Purpose (1 phrase) To create, update, delete crop types

Overview and scope Add new or update crop type

Preconditions Actor has a valid account on the ENORASIS system

Select report type
and date range

View reports

Start

Login

End

View report

YES

NO

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 68

Post conditions in words Crop types are saved or removed from the database and the performed
action is recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

 2. System presents user with the

options ñCreate new crop type ò, ñSearch
crop typeò

3. Actor picks the option

ñCreate new crop typeò and
defines the new crop type
details and submits it to the
system

 4.The action is submitted to the system
and the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

3a. ñSearch crop type ò The actor instead of picking the ñCreate

new crop type ò option picks ñSearch
crop type ò. Using this option the actor
can locate a crop type using search
filters. When the actor traces the crop

type of interest, he gets two new
options ñUpdateò, ñDeleteò

3a1. ñUpdate crop type ò The actor picks the option ñUpdate crop
type ò so he can change the crop type
data

3b2. ñDelete crop type ò The actor picks the option ñDelete crop
type ò so he can delete the selected crop

type . The system asks for actor
confirmation and the actor confirms the
deletion of the crop type

UNSUCCESSFUL
SCENARIOS

Conditions Actions

3b2. ñCrop type is already
used in the systemò

The system shows a message that the
crop type has been related to one or

more crops in the system, therefore it
cannot be deleted

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 69

ACTIVITY DIAGRAM

TEST DATE and NUMBER 23. September 2013. UC4.004 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor goes successfully through the ENORASIS login system as

administrator.

2. System presents user with the Crop types list and option ñCreate new
crop typeò.

3. Actor picks the option ñCreate new crop typeò and defines the new
crop type name and submits it to the system.

4. Use chose to save new crop type, the action is submitted to the
system and the logs are updated.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC4.004 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. There is no ñSearch crop typeò.

2. There are no other details to put except name.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.004 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñEdit crop type ò.

The actor picks the option ñEdit crop type ò so he can change the crop
Name (but no other data to assign).

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC4.004 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñDelete crop type ò.

The actor picks the option ñDelete crop type ò so he can delete the

selected crop type . The system asks for actor confirmation and the actor
confirms the deletion of the crop type. Type is not listed anymore in
table.

Create crop type
OR

Search

Create new crop type

Insert crop
type data and

submit

Save in
database
and logs

Search
results

Search

Edit
OR

Delete

Confirmation
on deleting

Edit crop type

Delete crop type

NOYES

Start

Login

End

Update crop
type data

Check if
crop type
is used

NO

YES

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 70

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC4.004 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. If user creates crop type that already exist in list there will be two crop
types with same name.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.004 #6

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Crop type is already used in the system and it is related to some plot.

2. The system shows a message that it cannot be deleted. ñCould not
delete record appearò.

TEST MISSION ACCOMPLISHED

3.4.1.20 [UC4 .00 5] Duplicating crop types

USE CASE # UC4 .00 5

USE CASE Name Duplicating crop types

ACTOR Farmers

Agricultural Organizations

System administrator

Purpose (1 phrase) To create duplicates of existing crop types

Overview and scope Agricultural Organizations and System administrator can create a new

crop type by duplicating an old one

Preconditions Actor has a valid account on the ENORASIS system

Post conditions in words Crop types are saved in the database and the performed action is
recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

2. Actor locates the crop type
of interest using search filters

 3. System presents user with the option
ñDuplicate crop type ò

3. Actor picks the option
ñDuplicate crop typeò

 4.System asks for actor confirmation to

create a duplicate for the selected crop
type

5.Actor confirms the creation
of the crop type

 6.The action is submitted to the system,

the duplicate crop type is created and
the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 71

UNSUCCESSFUL
SCENARIOS

Conditions Actions

2a. 3a. 5a. User abandons The actor abandons the performed
operation

ACTIVITY DIAGRAM

TEST DATE and NUMBER 23. September 2013. UC4.005 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Not implemented in current version.

TEST MISSION ERRORS

3.4.1.21 [UC4.006] Administering sensor types

USE CASE # UC4.006

USE CASE Name Administering sensor types

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) To create, update, delete sensor types

Overview and scope Farmers can administer only their own sensor types. They can create new
sensor types and define their characteristics

Agricultural Organizations can administer sensor types on behalf of their
farmers

System administrator can administer all sensor types

Preconditions Actor has a valid account on the ENORASIS system.

Post conditions in words Sensor types are saved or removed from the database and the performed

action is recorded in the logs

Trigger -

Included Use Cases -

Select action

Duplicate crop type

Search crop type

Save in
database
and logs

YES

Confirmation on
creating duplicate

Start

Login

End

View search
results

NO

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 72

Extended Use Cases -

MAIN SUCCESSFUL
SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully

through the ENORASIS login
system

 2. System presents user with the

options ñCreate new sensor typeò,
ñSearch sensor typeò

3. Actor picks the option

ñCreate new sensor typeò and
defines the new sensor type
details and submits it to the
system

 4. The action is submitted to the system
and the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

3a. ñSearch sensor type ò The actor instead of picking the ñCreate

new sensor type ò option picks ñSearch
sensor type ò. Using this option the actor
can locate a sensor type using search
filters. When the actor traces the sensor
type of interest, he gets two new
options ñUpdateò, ñDeleteò

3a1. ñUpdate sensor type ò The actor picks the option ñUpdate

sensor type ò so he can change the
sensor type data.

3b2. ñDelete sensor type ò The actor picks the option ñDelete
sensor type ò so he can delete the

selected sensor type . The system asks
for actor confirmation and the actor
confirms the deletion of the sensor type.

UNSUCCESSFUL
SCENARIOS

Conditions Actions

3b2. ñSensor type is already
used in the systemò

The system shows a message that the
sensor type has been related to one or

more sensors in the system, therefore it
cannot be deleted.

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 73

ACTIVITY DIAGRAM

TEST DATE and NUMBER 23. September 2013. UC4.006 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Actor goes successfully through the ENORASIS login system as
administrator.

2. System presents user with the Sensor types list and option ñCreate
new sensor typeò.

4. Actor picks the option ñCreate new sensor typeò and defines the new
sensor type name. Also there is Observed Property field.

5. User chose to save new sensor type, the action is submitted to the
system and the logs are updated. New sensor type will appear in the list.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC4.006 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. There is no ñSearch sensor typeò.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.006 #2

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñEdit sensor type ò.

The actor picks the option ñEdit sensor type ò so he can change the name
and Observed property.

TEST MISSION ACCOMPLISHED

Create sensor type
OR

Search

Create sensor type

Insert sensor
type data and

submit

Save in
database
and logs

Search
results

Search

Edit
OR

Delete

Confirmation
on deleting

Edit sensor type Delete sensor type

NOYES

Start

Login

End

Update
sensor type

data

Check if
sensor type is

used

NO

YES

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 74

TEST DATE and NUMBER 23. September 2013. UC4.006 #3

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. ñDelete sensor type ò.

The actor picks the option ñDelete sensor type ò so he can delete the
selected sensor type . The system asks for actor confirmation and the
actor confirms the deletion of the sensor type. Type is not listed anymore
in table.

TEST MISSION ACCOMPLISHED

TEST DATE and NUMBER 23. September 2013. UC4.006 #4

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. If user creates sensor type that already exist in list there will be two

sensor types with same name.

TEST MISSION ERRORS

TEST DATE and NUMBER 23. September 2013. UC4.006 #5

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS 1. Sensor type is already used in the system and it is related to some
plot.

2. The system shows a message that it cannot be deleted. ñCould not
delete recordò appear.

TEST MISSION ACCOMPLISHED

3.4.1.22 [UC4.007] Duplicating sensor types

USE CASE # UC4.007

USE CASE Name Duplicating sensor types

ACTOR Farmer

Agricultural Organizations

System administrator

Purpose (1 phrase) To create duplicates of existing sensor types

Overview and scope Farmers, Agricultural Organizations and System administrator can
duplicate sensor types

Preconditions ¶ Actor has a valid account on the ENORASIS system.

Post conditions in words Crop types are saved in the database and the performed action is
recorded in the logs

Trigger -

Included Use Cases -

Extended Use Cases -

MAIN SUCCESSFUL

SCENARIO in numbered
sequence

Actor Action System Action

1. Actor goes successfully
through the ENORASIS login
system

2. Actor locates the sensor
type of interest using search
filters

 3. System presents user with the option
ñDuplicate sensor typeò

3. Actor picks the option
ñDuplicate sensor typeò

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 75

 4. System asks for actor confirmation to

create a duplicate for the selected sensor
type

5. Actor confirms the
creation of the sensor type

 6. The action is submitted to the system,

the duplicate sensor type is created and
the logs are updated

OTHER SUCCESSFUL
SCENARIOS

Step Branching Action

UNSUCCESSFUL
SCENARIOS

Conditions Actions

3a. 5a. User abandons The actor abandons the performed
operation.

ACTIVITY DIAGRAM

TEST DATE and NUMBER 23. September 2013. UC4.007 #1

TEST OPERATOR Milos Radosavljevic

TEST COMMENTS Not implemented in current version.

TEST MISSION ERRORS

Select action

Duplicate sensor type

Search sensor type

Save in
database
and logs

YES

Confirmation on
creating duplicate

Start

Login

End

View search
results

NO

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 76

3.4.2 Mobile application

The goal of automatic testing in mobile applications is avoiding the necessity of human interaction, taking

manually the actions of each of the test scenarios. Once the tests are written, the programmer only
needs to collect the results to evaluate the success or failures of the te sts.

For testing the ENORASIS mobile application, Robotium library, an open source test automation

framework, that offers full support for native applications in Android, will be used. It allows the
integration with Ant or Maven tools to run tests as part of a continuous integration s ystem.

In the following paragraphs an example of a test using Robotium will be presented as well as the results
obtained testing all the use cases.

3.4.2.1 Test explanation

To explain the process of creating a test with the aforementioned Android framework Robo tium
(http://code.google.com/p/robotium/), an example of a usage scenario will be taken: ñCreation of a
Fieldò. The explanation will be completed with several Android code snippets for the main development
parts.

Before passing any test, the setUp() method is executed, used to initialize variables needed for the tests.
The main class for testing with Robotium is Solo . Solo is initialized with the instrumentation of the

testcase and the first activity to t est (Android Activities are application components that provide a screen
users can interact with).

@Override
public void setUp() throws Exception
{
 super .setUp();

 solo = new Solo(getInstrumentation(), getActivity());

 // Check that we have the right activity
 solo .assertCurrentActivity("Wrong activiy" , Login. class);
 solo .waitForActivity(Login. class);

 // Get the application context
 eCore = (ENORASIS Core) getActivity().getApplicationContext();
}

The following example shows an unsuccessful usage scenario test. In this case , the test checks if the
application allows the user to create a Field without specify ing its boundaries. If the app lication passes
the test t he field should not be created.

public void testA_NoBoundaries() throws Exception
{

 // Log into application and access to the FieldData activity
 login();

 // Fill the fields
 fillFields("AutoTest_Field" , "5000" , "200");

 // Check if the location is null

 assertNull("The location is not null" , eCore .auxField .getLocation(ObjectType.Field));

 // Save data
 solo .clickOnView(solo .getView(com.imaxdi. ENORASIS client.R.id. fielddata_button_save));

http://code.google.com/p/robotium/

FP7-ENV
ñENORASISò

D5.3 ENORASIS Technical Documentation

Version ï issue date: 1.0 ï 02/12/2013 Page 77

 // Wait and exit

 synchronized (solo)
 {
 solo.wait(2000);
 }
}

It i s important to make a difference between passing a test and meeting the test, passing a test does not
mean the function being tested is working properly, in the previous example, passing the test means that
the application detects the lack of boundaries, but meeting the test means checking that the Field has not
been created.

The assert line is how to determine whether, even if the test was successful, the application fulfilled what

was expected to do (in this case, not creat ing the field because there are no boundaries defined). If the
assert condition is not fulfilled, an error message will be received.

The following example depicts the main successful scenario for creating a Field. We must keep in mind
one important aspect when creating Robotium tests (automated GUI tests in general): the time. When a
user runs an application, he must wait sometimes for the activity screen to load correctly (request data
from a server; load a map view, etc). When working with automated test we must consider that
components must be vis ible in order to find them. Therefore method waitForActivity and the synchronized

structure are used. The latter very useful to add some delays avoiding an extremely quick execution of
the test, which would not be realistic.

By default, Robotium adds some delays between actions, but using those methods we can customize that
waiting times.

 public void testB _CreateField() throws Exception
 {
 // Log into application and access to the FieldData activity
 login();

 // Fill the f ields
 fillFields("AutoTest_Field" , "5000" , "200");

 // Go to the map to get the boundaries
solo .clickOnView(solo .getView(com.imaxdi. ENORASIS client.R.id. fielddata_button_gpsbounda
ries));

 // Wait to load the activity
 solo .wai tForActivity(GpsPoints. class);

 // Get the GPS points
 getPoints(4);

 // Save data

solo .clickOnView(solo .getView(com.imaxdi. ENORASIS client.R.id. fielddata_button_save));

 // Check that the field is correct created
 synchronized (solo)

 {
 solo.wait(2000);
 assertEquals("The Field was not created" , "AutoTest_Field" ,
eCore.auxField.getName());
 }

 // Wait and exit

 synchronized (solo)
 {

